SV: USE PROVIDED TRACE FILE INSTEAD OF YOUR OWN CAPTURE
Wireshark Lab: TCP v6.0
Supplement to Computer Networking: A Top-Down Approach, 6th ed., J.F. Kurose and K.W. Ross
“Tell me and I forget. Show me and I remember. Involve me and I understand.” Chinese proverb
© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved
In this lab, we’ll investigate the behavior of the celebrated TCP protocol in detail. We’ll do so by analyzing a trace of the TCP segments sent and received in transferring a 150KB file (containing the text of Lewis Carrol’s Alice’s Adventures in Wonderland) from your computer to a remote server. We’ll study TCP’s use of sequence and acknowledgement numbers for providing reliable data transfer; we’ll see TCP’s congestion control algorithm – slow start and congestion avoidance – in action; and we’ll look at TCP’s receiver-advertised flow control mechanism. We’ll also briefly consider TCP connection setup and we’ll investigate the performance (throughput and round-trip time) of the TCP connection between your computer and the server. Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the text1.
1. Capturing a bulk TCP transfer from your computer to a remote server
Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet trace of the TCP transfer of a file from your computer to a remote server. You’ll do so by accessing a Web page that will allow you to enter the name of a file stored on your computer (which contains the ASCII text of Alice in Wonderland), and then transfer the file to a Web server using the HTTP POST method (see section 2.2.3 in the text). We’re using the POST method rather than the GET method as we’d like to transfer a large amount of data from your computer to another computer. Of course, we’ll be running Wireshark during this time to obtain the trace of the TCP segments sent and received from your computer. (SV: you may choose to do this on your own, but to answer the questions below you will be using the posted trace file.)
Do the following:
· Start up your web browser. Go the http://gaia.cs.umass.edu/wiresharklabs/alice.txt and retrieve an ASCII copy of Alice in Wonderland. Store this file somewhere on your computer.
· Next go to http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-file1.html.
· You should see a screen that looks like:
· Use the Browse button in this form to enter the name of the file (full path name) on your computer containing Alice in Wonderland (or do so manually). Don’t yet press the “Upload alice.txt file” button.

1 References to figures and sections are for the 6th edition of our text, Computer Networks, A Top-down Approach, 6th ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

· Now start up Wireshark and begin packet capture (Capture->Start) and then press OK on the Wireshark Packet Capture Options screen (we’ll not need to select any options here).
· Returning to your browser, press the “Upload alice.txt file” button to upload the file to the gaia.cs.umass.edu server. Once the file has been uploaded, a short congratulations message will be displayed in your browser window.
· Stop Wireshark packet capture. Your Wireshark window should look similar to the window shown below.

If you are unable to run Wireshark on a live network connection, you can download a packet trace file that was captured while following the steps above on one of the author’s computers2. You may well find it valuable to download this trace even if you’ve captured your own trace and use it, as well as your own trace, when you explore the questions below.

2. A first look at the captured trace
Before analyzing the behavior of the TCP connection in detail, let’s take a high level view of the trace.
· First, filter the packets displayed in the Wireshark window by entering “tcp” (lowercase, no quotes, and don’t forget to press return after entering!) into the display filter specification window towards the top of the Wireshark window.
What you should see is series of TCP and HTTP messages between your computer and gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN message. You should see an HTTP POST message. Depending on the version of Wireshark you are using, you might see a series of “HTTP Continuation” messages being sent from your computer to gaia.cs.umass.edu. Recall from our discussion in the earlier HTTP Wireshark lab, that is no such thing as an HTTP Continuation message – this is Wireshark’s way of indicating that there are multiple TCP segments being used to carry a single HTTP message. In more recent versions of Wireshark, you’ll see “[TCP segment of a reassembled PDU]” in the Info column of the Wireshark display to indicate that this TCP segment contained data that belonged to an upper layer protocol message (in our case here, HTTP). You should also see TCP ACK segments being returned from gaia.cs.umass.edu to your computer.
Answer the following questions, by opening the Wireshark captured packet file tcpethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (SV: file is also provided at our website).
1.	What is the IP address and TCP port number used by the client computer (source) that is transferring the file to gaia.cs.umass.edu? To answer this question, it’s probably easiest to select an HTTP message and explore the details of the TCP packet used to carry this HTTP message, using the “details of the selected packet header window” (refer to Figure 2 in the “Getting Started with Wireshark” Lab if you’re uncertain about the Wireshark windows.
2.	What is the IP address of gaia.cs.umass.edu? On what port number is it sending and receiving TCP segments for this connection?

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of captured packets” window so that it shows information about the TCP segments containing the HTTP messages, rather than about the HTTP messages. To have Wireshark do this, select Analyze->Enabled Protocols. Then uncheck the HTTP box and select OK. This is what we’re looking for -a series of TCP segments sent between your computer and gaia.cs.umass.edu.

3. TCP Basics
Answer the following questions for the TCP segments:
3.	What is the sequence number of the TCP SYN segment that is used to initiate the TCP connection between the client computer and gaia.cs.umass.edu? What is it in the segment that identifies the segment as a SYN segment?
4.	What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu to the client computer in reply to the SYN? What is the value of the TCP flags field in the SYNACK segment?
5.	What is the sequence number of the TCP segment containing the HTTP POST command? Note that in order to find the POST command, you’ll need to dig into the packet content field at the bottom of the Wireshark window, looking for a segment with a “POST” within its DATA field. An additional tip: Start at the top of the TCP sequence and look at the raw packet data of the TCP packets.
6.	Consider the TCP segment containing the HTTP POST as the first segment in the TCP connection. What are the sequence numbers of the first six segments in the TCP connection (including the segment containing the HTTP POST)? At what time was each segment sent? When was the ACK for each segment received? Given the difference between when each TCP segment was sent, and when its acknowledgement was received, what is the RTT value for each of the six segments? What is the EstimatedRTT value (see Section 3.5.3, page 239 in text) after the receipt of each ACK? Assume that the value of the EstimatedRTT is equal to the measured RTT for the first segment, and then is computed using the EstimatedRTT equation on page 239 for all subsequent segments.

Note (SV): To answer this question you may use a table such as the following. First, record the sent and ACK times for the six segments. Then use a small script to compute the last two columns.
Example:
EstimatedRTT = 0.875 * EstimatedRTT + 0.125 * SampleRTT
EstimatedRTT after the receipt of the ACK of segment 1:
EstimatedRTT = RTT for Segment 1 = 0.02746 second
EstimatedRTT after the receipt of the ACK of segment 2: ????????

	Pack #
	Sent time
	ACK time
	ACK#
	RTT Value
	Estimated RTT

	1
	
	
	1
	
	

	2
	
	
	2
	
	

	3
	
	
	3
	
	

	4
	
	
	4
	
	

	5
	
	
	5
	
	

	6
	
	
	6
	
	

7.	What is the throughput (bytes transferred per unit time) for the TCP connection? Explain how you calculated this value. Consider the various answers relating to RTT time estimation and how you calculated those. For the most accurate answer, calculate your answer based on the TCP stream values in Wireshark, rather than on the size of the transferred file itself.
[bookmark: _GoBack]Note(SV): Compute throughput as the ratio between bytes transferred and the time elapsed. Use in your calculations data transferred and timings lasting from segment# 4 (which transfers 1 byte) until segment# 202.
4 The TCP segments in the tcp-ethereal-trace-1 trace file are all less that 1460 bytes. This is because the computer on which the trace was gathered has an Ethernet card that limits the length of the maximum IP packet to 1500 bytes (40 bytes of TCP/IP header data and 1460 bytes of TCP payload). This 1500 byte value is the standard maximum length allowed by Ethernet. If your trace indicates a TCP length greater than 1500 bytes, and your computer is using an Ethernet connection, then Wireshark is reporting the wrong TCP segment length; it will likely also show only one large TCP segment rather than multiple smaller segments. Your computer is indeed probably sending multiple smaller segments, as indicated by the ACKs it receives. This inconsistency in reported segment lengths is due to the interaction between the Ethernet driver and the Wireshark software. We recommend that if you have this inconsistency, that you perform this lab using the provided trace file.

4. TCP congestion control in action
Let’s now examine the amount of data sent per unit time from the client to the server. Rather than (tediously!) calculating this from the raw data in the Wireshark window, we’ll use one of Wireshark’s TCP graphing utilities -Time-Sequence-Graph(Stevens) -to plot out data.
	Select a TCP segment in the Wireshark’s “listing of captured-packets” window. Then select the menu : Statistics->TCP Stream Graph-> Time-Sequence-Graph(Stevens). You should see a plot like the one below.
[image:]
Here, each dot represents a TCP segment sent, plotting the sequence number of the segment versus the time at which it was sent. Note that a set of dots stacked above each other represents a series of packets that were sent back-to-back by the sender.
Answer the following question for the TCP. (SV (2016): This last question is optional, as we did not cover TCP congestion control yet.)
8.	Use the Time-Sequence-Graph (Stevens) plotting tool to view the sequence number versus time plot of segments being sent from the client to the gaia.cs.umass.edu server. Can you identify where and if TCP’s slowstart phase begins and ends, and where congestion avoidance takes over?
The following table might also help with the question above.

[image: Macintosh HD:Users:svisa:Desktop:Screen Shot 2016-02-25 at 3.42.20 PM.png]
image1.jpeg
i

£
T T T T
£3 h h

55

50

45

40

ES

X

25

20

15

10

0s

Timefs]

image2.png
Type No. Seq ACKed seq Outstanding data
Data 4 1 565
Data 5 566 2025
ACK 6 566 1460
Data 7 2026 2920
Data B 3486 4380
ACK 9 2026 2920
Data 10 4946 4380
Data 11 6406 5840
ACK 12 3486 4380
Data 13 7866 5527
ACK 14 4096 4917
ACK 15 6006 3007
ACK 16 7866 1147
ACK 17 9013 0
Data 18 9013 1460
Data 19 10473 2920
Data 20 11933 4380
Data 21 13393 5840
Data 2 14853 7300

Wireshark Lab: TCP w0

e e e e i sl oy

