
Lab 3: Docker DNS

A common problem that modern distributed application architectures face is service discovery.
For instance, it is common practice to compose a single application from simple appliances that
communicate with one another. A modern web application might have a service that is
responsible for serving static content, another responsible for authenticating users, another for
authorizing a user’s access to a particular resource, another for the management of users, and
one responsible for generating dynamic content. The advantage to this approach is that each
individual service can be scaled independently of one another. One might discover that, due to
the presence of a content delivery network and other web caches, one does not require as many
instances of the static content service as the authentication service. It is more cost-effective to
scale these services independently.

This so-called micro service architecture introduces a new problem: how is each service made
aware of the network location of the other services? As an application’s needs grow, the entire
stack will no longer fit on a single machine. The solution is to use DNS to implement service
discovery. All services should be nameable, and other services in the stack should be able to
communicate with one another through those names.

As this architectural pattern became more common, Docker encapsulated this process so that we
do not need to deal with the complexity of operating DNS servers. This has a few advantages: the
local development environment becomes much more similar to the deployment environment,
thereby minimizing the chances of odd bugs that only manifest themselves in production.
Second, building a production environment becomes much simpler!

This lab demonstrates Docker’s DNS system, including features like virtual IP addresses and
DNS load-balancing.

What is a Container?

A container is an isolated environment that processes are executed in. They are implemented
using kernel technology that permits allocation of physical resources (i.e. compute time,
memory, bandwidth, etc.) and allows different kernel parameters to be configured in logical
entities called namespaces. Most importantly, a container is not a virtual machine. Containers
share a kernel with all other processes. Basically, a container is a convenient way to package,
ship, and deploy software. You can find out more about containers from Docker: https://
www.docker.com/what-container.

Initializing the Swarm

Swarm is Docker’s distributed computing environment that supports service deployments. We
run a single-node swarm for this lab. This is easily accomplished. Run the following command
(while Docker is running!):

$ docker swarm init

You should see a message similar to this one.

https://www.docker.com/what-container
https://www.docker.com/what-container
svisa
Typewritten Text

Deploying the Stack

A stack is a collection of services (smaller applications that compose a larger application.) We
define stacks using docker-compose files, which are documented here: https://
docs.docker.com/compose/compose-file/

Make sure that you are in the directory of the provided stack.yml file and run:
$ docker stack deploy -c stack.yml lab3_dns

This deploys the stack specified by stack.yml and names it lab3_dns. You can verify the
deployment by running:

$ docker stack ls
$ docker service ls

The REPLICAS column in the output of the service ls subcommand lists the running
number of instances of the service and the desired number. The running number might show 0
initially, while Docker downloads the images from the Docker hub. Once the images are
downloaded, Docker will automatically start the services.

When the REPLICAS column shows that all services are running, open http://localhost:
8080 in your browser. You should see a message from the service lab3_dns_web_public.

Entering a Running Container

You can use the docker container exec command to enter into a running container. All
commands that you execute will run in the container’s environment, so it is possible to easily
debug problems. Let’s try this out.

You can view the containers running on your system:

$ docker ps

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
http://localhost:8080
http://localhost:8080

Let’s enter into the container with the listing 80/tcp under its PORTS entry. We just need the
first few parts of the Container ID to accomplish this:

$ docker container exec -it ed435 bash
You should notice that the prompt has changed. Mine looks like this now:

root@ed435bb6331d:/#
From now on, if you see a $ in the shell prompt, assume that the command is being executed in
the host environment. If you see something like root@... then assume the command is being
executed in the container.

Questions:

1. We are going to use nslookup on one of the services that is defined in stack.yml,
web_1. What is the IP address of the name server nslookup is using to resolve this
hostname? (In the container) run:

 root@ed435bb6331d:/# nslookup web_1
2. What is the IP address(es) of web_1? But how many instances of the service are running?

Can you guess what is going on? What does the vip value for endpoint_mode configure?
Consult the docker-compose documentation.

3. What is the IP address(es) of web_2? How many instances of the services are running?
What does the dnsrr value for endpoint_mode configure? Consult the docker-compose
documentation. When might you want to use the dnsrr endpoint_mode?

4. There is a secret message that web_public serves over HTTP on TCP port 8000 (in
container.) Modify stack.yml so that you can read this secret message from outside this
container. What secret value is served? Include the configuration of web_public in your
answer. Hint: you can force Docker to update a configuration by running docker stack
deploy -c stack.yml lab3_dns, and you can remove the running stack by running
docker stack rm lab3_dns.

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text
(SVisa: replace ed435 with first 3 letters of your Container ID that listens at port 80/tcp.)

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

svisa
Typewritten Text

