
Securing TCP Connections: SSL

Joe MacInnes
Department of Computer Science, College of Wooster

Wooster, Ohio 44691

Abstract—This paper explores the Secure Socket Layer
protocol and how it is used to secure TCP connections. It
provides a description of the underlying process of SSL
and gives two examples of real world attacks on SSL: the
heartbleed bug and the POODLE attack.

I. INTRODUCTION

In the early days of the internet, protocols were
designed to be robust, with little thought given
to security. At the time, only a small number of
researchers were using the internet, none of whom
had malicious intent. The underlying protocols used
in the internet, like TCP and UDP, date back to this
time, and, as such, have no security mechanisms
other than basic integrity checks (e.g checksums).
As a result, security has largely been delegated to
the application layer.

Secure Sockets Layer (SSL) is a direct response
for this need to secure transport layer communica-
tions. It is a protocol built on top of the transport
layer used to secure TCP connections, perhaps one
of the most commonly used transport layer proto-
cols. An application seeking to employ SSL uses an
SSL socket, which then connects to a TCP socket
(thus, SSL is somewhere between the application
and transport layers). When used, SSL provides a
TCP connection with three important components
of security: confidentiality, integrity, and authenti-
cation.

II. THE PROCESS

In order to secure a TCP connection, SSL goes
through three stages. The following descriptions of
these stages assume Alice is attempting to legit-
imately communicate with Bob over a TCP con-
nection, while a malicious third party, Eve lurks in
the background. In addition, these descriptions are
summary of the in-depth discussion on SSL pro-
vided by Kurose and Ross in their book, Computer
Networking: A Top-Down Approach [1].

A. Handshaking and Key Derivation

Just like TCP, SSL requires a handshaking phase
in order for Alice and Bob to establish a connection.
In TCP, this is mostly just to allocate the necessary
resources and buffers in the communicating parties,
but SSL requires a few more things.

First, Alice and Bob establish a regular TCP
connection (see Figure 1).

Next, Alice sends an SSL hello message to Bob.
This message contains a list of cryptographic pro-
tocols that Alice supports as well as a nonce (an
arbitrary, random number). Bob proceeds to choose
algorithms from the list until he has symmetric
key, public key, and message authentication code
(MAC) algorithms. He then sends these choices
back to Alice, along with a nonce of his own and
his certificate.

Alice can use Bob’s certificate to authenticate
his identity. Certificates contain their owner’s public
key, but are signed by a verified signing authority.
Thus, a client can get this signing authority’s public
key (which most browsers have built-in) and check
the signature to see if it’s valid.[2]

After doing this, Alice creates a fresh secret key,
encrypts it with Bob’s public key, and sends it back.
Using this shared secret key and their respective
nonces, Alice and Bob simultaneously generate two
encryption keys and two MAC keys (one of each
for data sent from Bob to Alice and vice-versa).

Lastly, both Alice and Bob send a MAC of
all their handshake messages. Essentially, a MAC
algorithm hashes some data, and the resulting hash
is the MAC. Thus, if the data is tampered with along
its journey from sender to receiver, then the receiver
will generate a MAC from the data that doesn’t
match the MAC they receive from the sender. This
is important for the SSL handshake phase, since Eve
could tamper with the algorithm list sent from Alice



to Bob and remove stronger key algorithms - recall
that this list is sent in cleartext. Figure 1 illustrates
this activity.

Fig. 1. The process of SSL handshaking and key derivation between
Alice and Bob. Inspired by a figure in Computer Networking: A Top-
Down Approach [1].

B. Data Transfer

With the proper keys established, Alice and Bob
can begin sending data back and forth over their
TCP connection. In order to do this securely, they
break their respective data streams up into records.
For each to send a record, they append their respec-
tive MAC key to the message data, and hash the
concatenation (see Figure 3). They then encrypt this
resulting hash using their respective session keys.
The resulting cyphertext, along with a few options
in cleartext comprise the record. This record is then

sent to the other party in TCP segments as seen in
Figure 2.

Fig. 2. An SSL record is broken apart and sent in a series of TCP
segments. Inspired by a figure in Computer Networking: A Top-Down
Approach [1].

When Alice receives a record from Bob, she first
extracts the cyphertext and decrypts it using Bob’s
session key. Then, she takes message data from the
cleartext, appends Bob’s MAC key, and hashes it.
If the result is the same as the received MAC, then
the message hasn’t been tampered with.

Under this setup, however, Eve can still destroy
the integrity of the data exchanged between Alice
and Bob. Since the records are sent in TCP seg-
ments, she could take the segments, reorder them,
and change their sequence numbers so that they
appeared to be in order. The receiver would not be
aware of the reordering.

In order to prevent this attack, Alice and Bob
each keep track of the sequence numbers of the
data streams between one another. Every time they
generate a MAC for a record, they include this
sequence number counter in the data being hashed
(but don’t put it in the actual data sent). Thus,
when the other party receives the record, they also
include what they think the sequence number is
when checking the MAC.

C. Connection Closure

To close the SSL connection, either Bob or Alice
has to notify the other. Normally, this would be done
by sending a TCP segment with the FIN flag set
to 1. However, under this setup, once again Eve
could meddle with the connection. All she has to
do is, as a man-in-the-middle, send an early TCP
FIN segment to Alice or Bob. This is known as a
truncation attack, since Eve is truncating the session.



The solution is in the cleartext information in-
cluded in an SSL record alongside the encrypted
data and MAC. This information contains the ver-
sion of SSL used, the length of the record (which
lets the receiver know when it should parse a
record), and finally the type. If this type is set to
a termination value, then the receiver will know
it should terminate the connection. While it seems
odd to put these values in cleartext, these fields are
incorporated when calculating the MAC (see Figure
3 for a summary of what all is hashed to produce
the MAC), so they can’t be tampered with without
the receiver tossing out the record.

Fig. 3. All the elements that are fed into a MAC hashing function
to generate the record’s MAC. Inspired by a figure in Computer
Networking: A Top-Down Approach [1].

III. SSL VULNERABILITIES

Having discussed the methods SSL uses to secure
a TCP connection, the following sections consider
some major attacks on the protocol in recent years.

A. Heartbleed

In 2014, a bug was discovered in OpenSSL, an
open source implementation of SSL, that allowed
malicious users to steal information from servers.
A relatively minor part of the SSL protocol not
discussed above is the heartbeat. Communicating
hosts will occasionally send tiny bits of encrypted
data to one another, in order to let the other know
that the connection is still open. When a host
receives some heartbeat data, it stores the data in
a buffer, and sends the data back to the sender.

Critically, the host sending the heartbeat data
must send the data as well as how many bytes long
the data is. The receiving host will allocate a buffer

of that size and dump in the data, before sending
it back. The OpenSSL implementation, however,
never checked to see if the amount of data received
matched the number of bytes the sender said it was.

Thus, the sender could send a small amount of
data, but say it was a massive number of bytes. The
receiver would allocate an equivalently large buffer
and store the data, which would only take up a small
fraction of the buffer. Because data in computer
memory is not thrown away until it is overwritten,
the rest of this buffer could contain valuable pieces
of information like usernames and passwords. When
the receiver tried to return the heartbeat data, it
would copy the entire buffer and send it, giving the
original sender this sensitive information (see Figure
4).

Fig. 4. An example of a normal and malicious heartbleed message.
Inspired by a web comic [3].

This attack shows that, despite the solidity of
the cryptographic primitives underlying SSL, imple-
mentation is equally as important. If the OpenSSL
implementation had simply checked to see if the
data in a heartbeat message matched the number
of bytes the sender said it was, the vulnerability
would not have existed. As it were, at the time of



its discovery, around 17% of all servers were using
this OpenSSL implementation and were open to the
attack [4].

B. POODLE
The internet consists of many hosts running vari-

ous versions of SSL. As such, another minor part of
SSL omitted from the description above is the way
in which a client and server establish the version of
SSL they will use. Basically, the server selects the
best version of SSL it supports and tries to initiate
a connection with the client. If this connection fails,
the server will select the next best version of SSL
it can use and try again.

A malicious entity engaging in a Padded Oracle
On Downgraded Legacy Encryption (POODLE) at-
tack will act as a man-in-the-middle attacker and
cause these connections to fail until the server
attempts to use SSL 3.0, at which point the attacker
will allow the connection.

The encryption algorithms used in SSL 3.0 were
found to be insecure. Given access to the cyphertext
of enough messages, an attacker can successfully
decrypt the information. Since the attacker is a man-
in-the-middle, they do have access to the cyphertext
of each message passed between the client and
server, and so can retrieve encrypted information.

In response to this attack, most servers have
begun to stop supporting SSL 3.0 [5].

IV. CONCLUSION

This paper has described SSL and shown two
examples of real life exploits of the protocol that
further reveal the protocol’s intricacies. It should
be important to note, however, that while SSL was
the topic of the paper, almost all hosts now use
the Transport Layer Security (TLS) protocol for
securing transport layer connections. The switch
was made in the early 2000s for a variety of
reasons. Chief among these reasons was the fact that
SSL was originally a proprietary protocol owned
by Netscape. This made it very difficult to open
up development of SSL. Overall, however, TLS is
very similar to SSL. When referring to securing
the transport layer, most texts now use the wording
SSL/TLS [4].

REFERENCES

[1] J. Kurose and K. Ross, Computer Network-
ing: A Top-down Approach. Pearson, 2017,
ISBN: 9780133594140. [Online]. Available:
https : / / books . google . com / books ? id =
VSAtjgEACAAJ.

[2] K. Vaniea, Lecture notes on ssl, University of
Edinburgh, Nov. 2017.

[3] R. Munroe, Heartbleed explanation, XKDC
Comics. [Online]. Available: https://xkcd.com/
1354/.

[4] J. Fruhlinger, “What is the heartbleed bug, how
does it work and how was it fixed?” CSO IDG,
Sep. 2017. [Online]. Available: https://www.
csoonline.com/article/3223203/vulnerabilities/
what - is - the - heartbleed - bug - how - does - it -
work-and-how-was-it-fixed.html.

[5] B. Moller, T. Duong, and K. Kotowicz, “This
POODLE bites: Exploiting the SSL 3.0 fall-
back,” Security Advisory, 2014.


