Big Data: Machine Learning in Hadoop

Douglas Code
College of Wooster
Wooster, OH
dcodel5@wooster.edu

Abstract

This project focuses on Hadoop, which is a platform used
to process very large data sets. The goal of the project
is to gain basic understanding of Hadoop functionality and
how Hadoop can be applied to large data problems. Hadoop
achieves its processing speed through a high level of a par-
allelism. MapReduce is a data processing model which acts
as a framework for parallel processing . Hadoop was imple-
mented on a virtual machine, VMware Fusion, and a demo
Hadoop system available from Cloudera to simulate Word-
Count activity. Hadoops accessibility and simplicity gives it
an edge over running and maintaing large high-end servers.
Its robustness and scalability make it suitable for many de-
manding jobs.

Background

Today we are living in the data age. The flood of data is
coming from many sources. For example, stock markets and
social media are privy to stores of information well beyond
what was imaginable a few decades ago. The good news
is that big data processing capabilities have grown as well.
However, storing and analyzing this wealth of data remains a
significant problem. This project focuses on Hadoop, which
is java-based software used to process very large data sets.
Hadoop can also be thought of as a software framework for
distributed processing of large data sets on clusters of hard-
ware [1].

Hadoop is often used on datasets in the range of petabytes
and run on clusters containing thousands of computers. A
common use of Hadoop is in distributed computer platforms
for analyzing or processing large amount of data. These
data sets are usually too big for even high-end machines
to manage efficiently due to input/output limitations which
can eat up hours of processing time just reading and writ-
ing data. These large-scale computations are characterized
by the need for large numbers of CPUs and large memory
to store and process data. Hadoop’s use of the MapReduce
system provides a framework for implementing software for
these large clusters of computers.

Norman Chamusah
College of Wooster
Wooster, OH
nchamusahl4@wooster.edu

MapReduce

MapReduce is a data processing model which acts as a
framework for parallel processing implemented on a large
scale [2]. Several organization like IBM and Google use
Hadoop as an open implementation of MapReduce which
processes vast amounts of data in parallel on large clusters.
The basic process behind MapReduce is summarized in Fig-
ure 1.

- ~
= A
{s roblemdata

Warker N ade]

Master Node

Fco‘ure
Waorker Node
zolution data n

—

Woarker Node
2

T N\ =
—

Figure 1: Diagram of basic MapReduce structure. Problem
data is broken up into smaller subproblems and sent to
worker nodes. The subsolutions to these problems are then
reduced to a single solution[5].

The problem is broken down into many sub-problems,
which are mapped to worker nodes. The worker nodes per-
form the processing and pass back sub-solutions to the Mas-
ter Node. The Master Node then reduces the solutions to a
single data solution, which is passed as the output. The Mas-
ter Node regularly checks on the functionality and progress
of the worker nodes. If a single worker node experiences
a failure and the Master Node consequently stops receiv-
ing updates from that node, the Master Node reassigns the
sub-problem to another worker node, making sure that no
subproblems are left incomplete. Due to this behavior, we
are assured that every job will be completed regardless of
worker node failure, giving Hadoop the trait of being partic-
ularly robust to failures in individual machines.



Hadoops accessibility and simplicity gives it any edge over
writing and running large distributed problems and pro-
grams. Its robustness and scalability makes it suitable for
even the more demanding jobs at Yahoo, Google, and Face-
book etc. It scales linearly to handle larger data by adding
more nodes to the cluster. Another advantage of using
Hadoop is that different users can submit computing jobs
from individual clients and desktops [3]. Our team was
tasked with investigating big-data machine learning possi-
bilities because of many of the above appealing advantages
of using Hadoop. Therefore, the goal for this project is to
gain basic understanding of Hadoop and its functions and
explore possible real-world applications.

The Hadoop tutorial from Cloudera provides a short
overview of Hadoop and MapReduce, discussing how
MapReduce splits the data into individual chunks to be pro-
cessed separately [2].1t also describes the Mapreduce frame-
work as a master Job Tracker that schedules jobs and a slave
Tracker that monitors tasks. The tutorial continues with a
sample implementation of the WordCount application for
Hadoop. A walkthrough the guide provides the steps for
using WordCount to count the frequency of each word in
a large data set. This tutorial and several online resources
helped us implement Hadoop on our machine.

Implementation

We successfully installed the virtual machine from Cloud-
era to run Hadoop. The implementation is run entirely on
the virtual machine, which simulates a Hadoop cluster. This
system contains a number of packages for Hadoop, each
of which is meant to use Hadoop’s large-scale processing
power for a different type of task. For our implementation
we used Mahout, which is one of Hadoops machine learn-
ing packages[3]. Figure 2 shows an example screen from the
Cloudera Hadoop package.

eo0e dloudera-cdh-demo-vm P,
W& (>Dp] =
1020 P

&5 Aopicalons Paces_systom @) (8

locaost:-

Figure 2: Demonstration of the Cloudera Hadoop package
running on a VMWare Fusion virtual machine. Both the

terminal window and the file system can be seen.

Mahout

Mahout is a package of machine learning implementations
currently in development. A large group of programmers are
currently working on coding for Mahout. As a result of their
efforts, implementations of k-means clustering, naive bayes
classifiers, and random forest decision trees. Mahout is one
of the most popular extensions of Hadoop and comes with
the Cloudera virtual machine.

K-Means Clustering

Clustering is an example of unsupervised learning tech-
nique. The goal of clustering is to partition data into a
number of clusters so that data in each cluster is more sim-
ilar to each other than in other clusters. Our implementa-
tion calls on K means clustering capabilities of Mahout. K-
means clustering classifies test data by assigning a set of k
centroid points and adjusting those centroid points so that
they correctly represent data clusters around them. Hadoops
scalability offers the power to use k-means clustering on ex-
tremely large data sets with thousands of centroid points,
however, due to limitations on time and the use of simulated
cluster rather than a real cluster, we only perform the cluster
on small data set.

N-Grams and Text Analysis

In our project we want to analyze frequently occurring text
in a file. We used a collection of Shakespeares work and ap-
ply K-means clustering to find the most frequently occurring
n-grams. N-grams are the sequences of a given size, which
are made up of n adjacent words in a section of text. For
example, The, is a possible n-gram where n=1, The dog, is
an n-gram where n=2, and The dog ran is an n-gram where
n=3.

N-grams are frequently used in speech recognition applica-
tions. By identifying commonly occuring phrases and com-
binations of words, programmers are able to create soft-
ware which more effectively picks up human speech pat-
terns. The use of n-grams is also common in sentiment clas-
sifiers, which examine text and assign a certain sentiment
or mood to that section of text. This is helpful to social net-
work and advertisers, as they can keep track of trends among
their users over time and general responses to changes and
advertisements. Google’s n-gram viewer allows the user to
perform a large-scale search of n-grams from over 30 mil-
lion books. This sort of data analysis is a perfect example
of the possible applications of Hadoop, and our implemen-
tations is similar to the Google n-gram viewer, albeit on a
much smaller scale. Figure 3 shows an example result from
the Google n-gram viewer.



Figure 3: Sample n-gram from Google n-gram viewer. The
frequency of the phrase “machine learning” was plotted
over the time period 1970-2000[4].

Hadoop Commands

Our K-means clustering was run on a set of 5 Shakespeare
plays: Hamlet, Romeo and Juliet, King Lear, Macbeth,
and Julius Caesar. In order to run the clustering, Apache
Maven had to be installed onto the Hadoop cluster. Apache
Maven is a tool which automatically builds Java programs
and downloads necessary Java packages and plugins. Due
to the fact that our software was written in Java, Maven was
essential to an effective run. In total, five Hadoop commands
needed to be run to complete the k-means clustering and out-
put the data.

The first command is an f5 -put command. This command
takes the data files, in this case the folder of .txt files contain-
ing transcriptions of Shakespeare’s plays, and places those
files into the Hadoop file system. This lets Hadoop work in
a consistent directory and easily operate on the needed files.

The next command is a seqdirectory command. The seqdi-
rectory command converts the .txt files to SequenceFiles,
which are the required format for the upcoming actions that
Mahout and Hadoop will take. This command is parameter-
ized by input and output commands which let the user decide
which files to convert and where to place the converted files
in the Hadoop file system.

Following seqdirectory is the seq2sparse command. This
command processes the SequenceFiles into a vector of
words, which is required for processing. A whitespace an-
alyzer implementation from Apache is used, which creates
breaks at each whitespace (space), breaking up each indi-
vidual word. This lets the text be vectorized, and lets the
software know where each individual word begins and ends.
Many of the basic functions of the n-gram processing are
parameterized in this command. -m/ sets the minimum like-
lihood required, which can be adjusted to remove extremely
low-frequency words from the final results. Conversely, -
x sets the maximum frequency, which can be adjusted to
remove extremely common and largely meaningless words
like. The -md (minimum documents) parameter also ex-
cludes words occuring in only one or two documents, mak-
ing it so that uncommon words with extremely high cluster-
ing in a single area aren’t disproportionately represented in

the results. Finally, the -ng parameter decides the size of the
n-gram, letting the user control the type of final output they
will receive.

After the data is vectorized, the k-means command is called,
finally performing k-means on the now-ready data set. This
creates cluster files in the Hadoop file system. Some k-
means parameters are available, like -maxlter , which con-
trols how many iterations the centroids will adjust, and -
numClusters, which lets the user decide how many classi-
fication clusters to use.

Once the classifications have been made, the data is output
using the clusterdum command. This command prints the
data to a text file which can be used for analysis. The text
file shows the frequency of all n-grams in the original works,
and also shows a number of the most frequently occurring
n-grams, which can be customized by using the -numWords
parameter to choose the number that will be displayed. Fig-
ure 4 shows the format of the output data.

Figure 4: Sample output from Mahout’s k-means classifier.
The top results for each cluster are shown along with the
total data from each cluster.

Conclusions

While Hadoop presents a significant learning curve to
new users, it presents significantly more accessibility and
data-crunching potential than the much more difficult task
of manually programming highly parallelizable software.
Much of the time we spent working with the software was
taken up by the task of learning new commands and strug-
gling with the command-line interface. However, both of
these problems would fade quickly with more practice and
exploration into the scripting of commands so that programs
run more autonomously.

The MapReduce framework offers tremendous benefits from
a programming perspective. By hiding most of the work
of subdividing and managing huge distributed systems,
MapReduce makes parallel programming accessible to pro-



grammers of all levels. The programmer merely has to tell
the system how to subdivide and reduce the larger problem
at hand, and the software handles all of the node microman-
agement and failure handling. This also presents significant
advantages to large companies, as it lets them implement
custom systems and code without having to go through the
added expense of hiring specialists.

Additionally, and partially as a result of this accessibility, a
large number of public projects to provide implementations
of software for Hadoop have sprung up around the world.
Packages like Mahout offer relative ease of use and save a
tremendous amount of time by letting users get all the bene-
fits of machine learning without the expense and time of im-
plementing these algorithms. Many packages like Mahout
expand Hadoop’s capabilities even further and well beyond
the realm of machine learning. This once again offers signif-
icant benefits to businesses which decide to set up Hadoop
clusters, as they don’t have to pay programmers to imple-
ment often complex algorithms. Instead they can use pre-
made packages which are often free and completely capable
of solving the problem in question.

Future Work

Due to the learning curve of Hadoop and the tremendous
scale of the project, we were only able to explore a tiny frac-
tion of Hadoop’s capabilities. Future projects would benefit
from further exploration of Mahout’s various packages in-
cluding Naive Bayes Classifiers and random forest decision
trees.

Another direction to take in the future is to start working

on custom implementations of software for Hadoop. By di-
rectly working with the MapReduce framework, researchers
could grasp the underlying structure and its implications for
programmers much more quickly than solely through read-
ing tutorials and research papers. Furthermore, many of the
real-world applications of Hadoop require code to be modi-
fied or created to customize to a project’s needs. Once more
comfort programming for Hadoop is achieved, future work
could lead to involvement in the communities developing
packages like Hadoop.

Finally, the capabilities of Hadoop could be better explored
by setting it up on a real cluster of computers rather than a
simulated cluster on a virtual machine. This would give a
firsthand look at the difficulties involved in large scale dis-
tributed computing, and let the user really enjoy the speed
benefits of using Hadoop.

References

Cloudera, “Hadoop Tutorial” Accessed May 6,
2013. http://www.cloudera.com/content/cloudera-
content/cloudera-docs/HadoopTutorial/CDH4/Hadoop-
Tutorial.html.

Patil, Sarika, and Shyam Deshmukh. ”Survey on Task As-
signment Techniques in Hadoop.” International Journal of
Computer Applications. no. 14 (2012): 15-18.

Owens, Jonathan, Brian Femiano, and Jon Lentz. Hadoop
Real-World Solutions Cookbook. Packt Publishing, 2013.

Google Inc, "Google Ngram Viewer.” Accessed May 6,
2013. http://books.google.com/ngrams/.



