Boolean algebra

- Represent functions as expressions usites variables, NOT, AND, OR, etc.
- AND is represented with multiplication, OR by addition, NOT with a berover the varieble

F = ABC + ABC

- Other forms use V for OR, Λ for AND, and \neg for NOT $F = A \wedge B \wedge C \vee A \wedge \neg (A \wedge C)$

Boolean identities

Identity law
$$1A = A$$
, $0 + A = A$

Null law $0A = 0$, $1 + A = 1$

I dempotent law $AA = A$, $A + A = A$

I wrose law $A\overline{A} = 0$, $A + \overline{A} = 1$

Commutative law $AB = BA$, $A + B = B + A$

Associative law $(AB)C = A(BC)$, $(A + B) + C = A + (B + C)$

Distributive law $A + BC = (A + B)(A + C)$, $A(B + C) = AB + AC$

Absorption law $A(A + B) = A$, $A + AB = A$

De Morganis Law $\overline{AB} = \overline{A} + \overline{B}$, $\overline{A + B} = \overline{A} \overline{B}$

A B X 0001
0 0 0
1 0 0
1 1 1

Actual advition A + B

A B Sum Carry
0 0 0 0
0 1 0
1 0 1

Sum is exclusive or (XOR) Carry is AND