Lexicographic ordering - Alphatetic ordening for example

| binary | decimal | two's comple | ment |
|--------|---------|--------------|------|
| 6000   | 0       | 0            |      |
| 0001   | t       | ι            |      |
| 0010   | 2       | 2            |      |
| 0011   | 3       | 3            |      |
| 0100   | 4       | 4            |      |
| 0101   | S       | 5            |      |
| 0110   | 6       | 6            |      |
| 0111   | 7       | 7            |      |
| 000    | 8       | - 8          |      |
| 1001   | 9       | - 7          |      |
| 000    | 10      | - 6          |      |
| ιοιι   | 11      | - S          |      |
| ()00   | lz      | -4           |      |
| 1101   | 13      | -3           |      |
| 6111   | 14      | -2           |      |
| 1111   | 15      | -1           |      |

 $\frac{0111}{1000}$ 

Real numbers  
- Infinitely many  
- Unlike integers, there are infinitely many real numbers between any 2 real  
numbers  
- Impossible to represent all real numbers with a fixed binny storase type  
even within a certain range  
Floating point representation  

$$n = f * 10^{\circ}$$
  
*f is the fraction or mantissa*  
*e is the exponent*  
IEEE floating point uses this sort of representation but with 2  
as the base  
Provides a lase range of possible values, but then are gaps (numbers we cannot  
represent) which leads to rounding errors

