
Design Patterns



Observations

• There are repeated design structures and roles of classes used in 
most software

• Not possible to capture these structure and roles into specific classes, 
i.e., they are a part of a class, but do not make up the entire class

• Language features may support these if organized correctly

• Need a way to communicate about them



Issues

• Must be widely applicable

• Solution must be safe

• Solution should be efficient



Software Design Patterns

• Design Patterns: Elements of Reusable Object-Oriented Software
• Gamma, Helm, Johnson, Vlissides

• - AKA, "Gang of 4 Book" (GOF'95)



Basic Elements of Design Patterns

• Name – how we refer to patterns so others know what we mean

• Problem – what issue are they meant to help with

• Solution – how do we implement the pattern

• Consequences – caveats to consider when applying a pattern



Categories of Design Patterns

• Creational Patterns
• provide various object creation mechanisms, which increase flexibility and 

reuse of existing code

• Structural Patterns
• explain how to assemble objects and class- es into larger structures, while 

keeping this structures flexible and efficient. 

• Behavioral Patterns
• concerned with algorithms and the assignment of responsibilities between 

objects



Template Method



Template Method Pattern

• behavioral design pattern 

• defines the skeleton of an algorithm in the superclass 

• subclasses override specific steps of the algorithm without changing 
its structure 

• NOT related to C++ templates



Analogy



Why?

• Fundamental technique for code 
reuse

• Particularly important in class 
libraries to factor out common 
behavior

• Allows for easy extension to a 
predefined interface



How?

• Implement the invariant parts 
of an algorithm
• Convert the unique steps to 

be abstract functions
• Some steps can have a default 

implementation, but can still 
be overridden
• Add hooks before and after 

crucial parts of the algorithms 
for extension buy subclasses 
[optional]



Template Method UML Diagram

Abstract functions are shown in italics in UML



Pros and Cons

+ Client code can override only 
certain parts of the algorithm, 
making them less affected by 
changes to other parts of the 
algorithm

+ Duplicated code is consolidated 
to super class

- Might violate Liskov Substitution 
Principle

- Client code might be limited by 
the provided steps for an 
algorithm 

- Template methods get more 
complicated to maintain as the 
number of steps in the algorithm 
increase



Observer Pattern



Observer Pattern

• behavioral design pattern 

• defines a subscription mechanism to notify multiple objects about 
any events that happen to the object they’re observing 



Real World Analogies

• You are waiting for a graphics card

• Everyday you go to the store and check if there is a graphics card

• Each day you go home sad….
• until you get one!

• Inefficient!
• In computing terms, we are “polling” a resource



Real World Analogies

• You want to notify people that you have graphics cards in stock

• You pay an advertising company for the email addresses of everyone in 
your zip code and send out some spam email

• Some people want a graphics card and are happy…others wonder why you 
are bothering them

• Inefficient!
• Closest computing analogy might be a broadcast message to any accessible 

object/device



Real-World Analogy Solution

• A subscription service

• Indicates your interest in the 
information

• Sends you messages about the 
thing you want to know about

• Unsubscribe when you don’t care 
anymore



Why?

• You have a resource/object that changes state, and other objects 
need to be aware of the change as it directly affects them

• Think about event driven interfaces (Graphical User Interfaces)
• When you interact with the controls on the screen code in the background is 

waiting to respond to the actions you take
• They are “subscribed” to that event

• Also common for some networking applications or other devices 
capable of generating data at unknown intervals



Observer Pattern UML



Pros and Cons

+ Open/Closed Principle. You can 
introduce new subscriber class-
es without having to change the 
publisher’s code (and vice versa 
if there’s a publisher interface) 

+ You can establish relations 
between objects at runtime

- Subscribers are notified in a 
random order



Strategy Pattern



Strategy Pattern

• behavioral design pattern 

• define a family of algorithms, each in a separate class 

• make the algorithms objects interchangeable



Why?

• Many related classes differ only in behavior

• Different variants of an algorithm are needed, often for different 
space/time tradeoffs

• The algorithm uses data the client should not know about, or had 
dependencies we want to leave out of the client

• A class has many behaviors, and there are multiple conditional 
statements in the operations



Example



How?

• Move all the different algorithms from a class into separate classes 
called strategies that inherit from a class that defines the strategy 
interface
• We can have our original class, which we call the context, store a 

reference to one of the different strategies.
• In this way, the context delegates to the strategy for algorithmic 

assistance rather than having that responsibility
• The context does not select the strategy, instead the client passes the 

desired strategy to the context



Example Revisited
Can expand for biking too!



Pros and Cons

+ You can swap algorithms used 
inside the object at runtime

+ Implementation details of an 
algorithm are isolated from the 
code that uses it

+ You can replace inheritance with 
composition

+ Satisfies the Open/Closed 
Principle as you can introduce 
new strategies without changing 
the context

- Limited value if you only have a 
small number of algorithms that 
rarely change

- Clients must be aware of the 
differences between the 
strategies to select the 
appropriate one

- Can use a set of anonymous 
functions to accomplish the 
same thing in supporting 
languages with less extra 
classes/interfaces



More resources

• You can find a great catalog of design patterns at the link below.
• https://refactoring.guru/design-patterns/
• Examples in multiple languages
• Good for reference with clear potential use cases, benefits, and drawbacks
• Basis for the slide material
• The paid PDF version has essentially the same content as the website

• If you don’t mind a Java based focus and would like a friendly read
• Head First Design Patterns 2nd Edition is available on O’Reilly for free with 

your Wooster login
• If you’d like to check out the original “Gang of Four” book from ’94 

can also be found on O’Reilly
• Design Patterns: Elements of Reusable Object-Oriented Software

https://refactoring.guru/design-patterns/

