
Design Principles

1



Previous Code Convention Discussions

• Style
• What does the code look like?
• Is it consistent, scalable, and maintainable?
• Appearance, format, readability

• Naming
• How are we describing the identifiers in our code?
• Are they understandable?
• Do the names reflect purpose/responsibility?
• Program comprehension

2



SOLID Principles for Object-Oriented Design

• Five basic principles (guidelines) for Object-Oriented Design (OOD)

• Results in systems that are:
• Easy to maintain
• Easy to extend

• SOLID is a guide for:
• Creating designs from scratch
• Improving existing designs

3



SOILD Principles

• Single Responsibility Principle (SRP)

•Open/closed Principle (OCP)

• Liskov Substitution Principle (LSP)

• Interface Segregation Principle (ISP)

•Dependency Inversion Principle (DIP)
4



Single Responsibility Principle

• Every class should have A SINGLE RESPONSIBILITY

• The responsibility of a class drives its need to change

• Responsibility should be entirely encapsulated by the class

• All functionality of the class should focus on that single responsibility

• Why? 
• More cohesive
• Easier to understand
• Easier to maintain

5



SRP Analysis

• A basic method for determining if a method belongs with a given 
class.

• A rough approximation

• Need to apply context about the domain and the abstraction

The _[class name] _[method name]_ itself. 

6



7



8



9



SRP Example

10



SRP Example - Violation

11



SRP Example - Compliant

12



Open/Closed Principle

• Software entities (classes, function, etc.) should be open for extension but 
closed for modification

• Closed - as can be compiled, stored in a library, and used by client classes

• Open - as any new class can inherit and add new features

• Why? 
• Client code dependent on base (closed) class unaffected
• Less testing
• Less code to review

13



Meyer’s Open/Closed Principle

• Implementation is extended through inheritance

• “Open” means available for extension (generalization/inheritance)

• “Closed” to avoid changes to the original class

• New functionality by adding a new class, not changing current ones

• Results in tight coupling between base and derived classes 14



Polymorphic Open/Closed Principle

• Abstract base class and multiple implementations that we can 
substitute for each other

• Base design on abstract base classes
• Focus on sharing the interface, not the implementation
• “Code to an interface, not an implementation”

• Reuse implementation via delegation

«abstract»
Parser
+parse()

ParserImplementation

+parse()

ParserRubyImplementation

+parse()

15



Liskov Substitution Principle

• An Object in a program should be replaceable with an instance of subtypes 
without affecting program correctness
• “Objects of subtypes should behave like those of supertypes if used via supertype 

methods.”
• Preconditions cannot be strengthened in a subtype
• Postconditions cannot be weakened in a subtype
• Invariants of supertype must be preserved in subtype
• History constraint - new methods in subtype cannot introduce state 

changes in a way that is not permissible in the supertype
• Why? 

• Knowledge/assumptions about base class apply to the subclass
• Easier to understand
• Easier to maintain.

16

https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/Class_invariant


LSP Example

17



LSP Example - Violation

18



LSP Example

19



LSP Example

20



21



Interface Segregation Principle

• A client should NOT be forced to depend on methods it does not use
• Having many client-specific interfaces is better than one general-

purpose interface
• Why?
• More cohesive
• Lower coupling
• Easier to understand
• Easier to maintain

22



ISP Example – How can we make this better?

23



ISP Example – How can we make this better?

Bird

#name: string

FlyingBird

+fly()

Ostrich

Duck

CREATED WITH YUML

24



Dependency Inversion Principle

• Depend upon abstractions, not concretions (specific implementations 
of an abstraction)
• Abstractions should not depend on details, but details on abstractions
• High-level modules are independent and should not depend on low-

level modules
• Why?
• Lower coupling
• Reuse
• Easier to test
• Easer to understand
• Easier to maintain 25



DIP Example

26



DIP Example – Can We Do Better?

27



DIP Example – Can We Do Better?

https://medium.com/@kedren.villena/simplifying-dependency-inversion-principle-dip-59228122649a

Lamp
#isOn: boolean

#powerSource: OutletInterface
+turnOn()
+turnOff()

+changeOutlet(OutletInterface)

<<OutletInterface>>

DormOutlet

GarageOutlet

ClassroomOutlet

CREATED WITH YUML 28

https://medium.com/@kedren.villena/simplifying-dependency-inversion-principle-dip-59228122649a


29



Other Helpful Principles

• DRY- Don’t Repeat Yourself
• Use functional decomposition or abstractions to reduce redundancies

• YAGNI – You Aren’t Gonna Need It
• Don’t try to build out features now that you think your software MIGHT need 

later
• Software development is too volatile for that, focus on what is needed now 

and the maintainability of your design

• Occam’s Razor/KISS – Keep it simple
• Don’t introduce unnecessary complexity or overblown designs

• GRASP – General Responsibility Assignment Software Patterns
• Design patterns that can help with your software design/implementation
• More on design patterns later… 30



Conclusion

• Meant to be applied together
• Make it more likely that the system is easy to maintain and extend 

over time
• SOLID principles are guidelines
• Do not guarantee success
• Can be misused

• Use in conjunction with other principles
• Don’t chase perfection
• Design based on your needs 
• Good enough design gets software delivered

31


