Design Principles

Previous Code Convention Discussions

e Style
 What does the code look like?
* |s it consistent, scalable, and maintainable?
e Appearance, format, readability

* Naming
 How are we describing the identifiers in our code?
* Are they understandable?
* Do the names reflect purpose/responsibility?
* Program comprehension

SOLID Principles for Object-Oriented Design
* Five basic principles (guidelines) for Object-Oriented Design (OOD)

e Results in systems that are:
* Easy to maintain
* Easy to extend

* SOLID is a guide for:

* Creating designs from scratch
* Improving existing designs

SOILD Principles

* Single Responsibility Principle (SRP)
* Open/closed Principle (OCP)

¢ Liskov Substitution Principle (LSP)

¢ !nterface Segregation Principle (ISP)

¢ erendency Inversion Principle (DIP)

Single Responsibility Principle

e Every class should have A SINGLE RESPONSIBILITY

* The responsibility of a class drives its need to change

* Responsibility should be entirely encapsulated by the class

 All functionality of the class should focus on that single responsibility

* Why?
 More cohesive
e Easier to understand
* Easier to maintain

SRP Analysis

* A basic method for determining if a method belongs with a given
class.

* A rough approximation

* Need to apply context about the domain and the abstraction

The [class name] [method name] itself.

— Automobile

+ start() void

+ stop() void

+ thangeTives(tives : Tivel]) void
+ drive() void

+ wash() void

+ theekOil() void

+ aet0I0) int

You should have thought cavefully bricky—we thought that
?.b‘.“:‘.i ‘.’.h."‘ one, and what qd'-

s This 1 3 mebhod that ot sk rd stp bl s
me L -
veburns the amount of il in ‘ dﬁ"'b"d:mrﬁda
sutomabile—and that is something b .
that the automebile should do
\C&u'i&e%m'
; T W "
fo e Yol o
Some | ;

*periente.

We used owv anatyss
to ‘\5\':" ot ¢
Lhese tour ™

ceally aven £ the

nwsbf*-‘f y

Now Automebile
w on" d iiﬂs‘c

iblit
responsiiily —>
dealing with its
own basit funthions.

. 3
€sPonsibifi4
c*' ncfy t:dhve
dutomabile tself
Automobile el /—‘Dr—f"—_—_
W= + drivela - Automebile) vord
+ start() :void
+ stop() :void /:b CavWash
+ thange Tives(tives : Tivel]) : o
handle washi
+ drive() veid Copsh |4 e 2 "o
+ wash() void _ ol + wash(a - Avtomebile) void
~+ LMO"O void |
+ 9et0il0) :int \
\\5; Mecehanie
+ ehamgeTives(a - Automobile, Lives : TivesC]) void
Automobile ‘\\ }
— A methanie is vesponsible for
+ start() void thanging tives and thetking
+ gb?() vod the oil on an automobile
+ 5&,0“0 ‘int g

SRP Example

‘ Spaceship \

+name:string
+takeoff()

+fly()
+land()

+approvelanding()

SRP Example - Violation

Spaceship
#name: string
+takeOff()

| +fly() |
+land()

laggroveLandingg) |

CREATED WITH YUML 11

SRP Example - Compliant

Spaceport

Spaceship

#name: string

#name: string

-
-—
-—
-
-—
-
-—
. -
-
ju

+approvelLanding()

+takeOff()
+land()

e
~
~
~
~
~
~
~
~
-~
-~
-y
~

Pilot

#name: string

+fly()

12

Open/Closed Principle

e Software entities (classes, function, etc.) should be open for extension but
closed for modification

* Closed - as can be compiled, stored in a library, and used by client classes

* Open - as any new class can inherit and add new features

* Why?
* Client code dependent on base (closed) class unaffected

* Less testing
* Less code to review

Mevyer’s Open/Closed Principle

* Implementation is extended through inheritance

Parser XMLParser

+parse() +parse()

* “Open” means available for extension (generalization/inheritance)
* “Closed” to avoid changes to the original class
* New functionality by adding a new class, not changing current ones

e Results in tight coupling between base and derived classes

Polymorphic Open/Closed Principle

* Abstract base class and multiple implementations that we can
substitute for each other

ParserImplementation

«abstract» | e +parse()
Parser =
S
+parse() | T ParserRubyImplementation

+parse()

* Base design on abstract base classes

* Focus on sharing the interface, not the implementation
* “Code to an interface, not an implementation”

* Reuse implementation via delegation

Liskov Substitution Principle

* An Object in a program should be replaceable with an instance of subtypes
without affecting program correctness

. ”Ob'ecés of subtypes should behave like those of supertypes if used via supertype
methods.”

* Preconditions cannot be strengthened in a subtype
e Postconditions cannot be weakened in a subtype
* Invariants of supertype must be preserved in subtype

* History constraint - new methods in subtype cannot introduce state
changes in a way that is not permissible in the supertype

 Why?
* Knowledge/assumptions about base class apply to the subclass

e Easier to understand
* Easier to maintain.

https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/Class_invariant

LSP Example

Rectangle

#width: int
#height: int

Square

#width: int
#height: int

+setWidth()
+setHeight()
+calculateArea()

+setWidth()
+setHeight()
+calculateArea()

LSP Example - Violation

Rectangle

#width: int
#height: int

Square

#width: int
#height: int

+setWidth()
+setHeight()
+calculateArea()

+setWidth()
+setHeight()

+calculateArea()

CREATED WITH YUML

LSP Example

Ostrich
Flying Bird </
#name: string
+fly ()
Duck

CREATED WITH YUML

LSP Example

FlyingBird

#name: string

l—

+fly ()

CREATED WITH YUML

Duck

20

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

Interface Segregation Principle

* A client should NOT be forced to depend on methods it does not use

* Having many client-specific interfaces is better than one general-
purpose interface

* Why?
* More cohesive
* Lower coupling
e Easier to understand
* Easier to maintain

ISP Example — How can we make this better?

Ostrich
Flying Bird /
#name: string
+y() —
Duck

CREATED WITH YUML

ISP Example — How can we make this better?

FlyingBird

Bird

+fly ()

#name: string

Ostrich

Duck

CREATED WITH YUML

Dependency Inversion Principle

* Depend upon abstractions, not concretions (specific implementations
of an abstraction)

* Abstractions should not depend on details, but details on abstractions

* High-level modules are independent and should not depend on low-
level modules

* Why?
* Lower coupling
* Reuse
Easier to test
Easer to understand
Easier to maintain

DIP Example

Lamp

#isOn: boolean
#powerSource: DormOutlet

+turnOn()
+turnOff()

CREATED WITH YUML

DIP Example — Can We Do Better?

Lamp

#isOn: boolean
#powerSource: DormOutlet

+turnOn()
+turnOff()

CREATED WITH YUML

DIP Example — Can We Do Better?

Lamp
#isOn: boolean
#powerSource: OutletInterface
+turnOn()
+turnOff()
+changeOutlet(Outletinterface)

DormOutlet

<<QutletInterface>>

GarageOutlet

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L.~

ClassroomOutlet

https://medium.com/@kedren.villena/simplifying-dependency-inversion-pr

CREATED WITH YUML
inciple-dip-59228122649a

28

https://medium.com/@kedren.villena/simplifying-dependency-inversion-principle-dip-59228122649a

Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

Other Helpful Principles

* DRY- Don’t Repeat Yourself

* Use functional decomposition or abstractions to reduce redundancies

* YAGNI — You Aren’t Gonna Need It

* Don’t try to build out features now that you think your software MIGHT need
later

» Software development is too volatile for that, focus on what is needed now
and the maintainability of your design

* Occam’s Razor/KISS — Keep it simple
* Don’t introduce unnecessary complexity or overblown designs

 GRASP — General Responsibility Assignment Software Patterns
* Design patterns that can help with your software design/implementation
* More on design patterns later...

Conclusion

* Meant to be applied together

* Make it more likely that the system is easy to maintain and extend
over time

* SOLID principles are guidelines

* Do not guarantee success
 Can be misused

* Use in conjunction with other principles

* Don’t chase perfection
* Design based on your needs
* Good enough design gets software delivered

