
Classes Relationships
Diagramming with UML

1

Classes

2
Private Member (usually a “-” sign)

Public Member (usually a “+” sign)

Protected Member (usually a “#” sign)

Dependency

• An object of one class uses an object
of another class in a method

• Usually as a parameter to a method

• The object is used but is not stored
in the class

3

Association – Unidirectional

• An object of one class contains an
object of another class as a data
member

• The *’s are known as multiplicity.
• a book can be owned by any number of

people
• a person can own any number of books

4

Association – Bidirectional

• Two classes each contain an object of
the others type as a data member

• In this case a person lists the books they
own while the book also lists people
that own it

• Most often this is not an ideal
relationship to have
• Difficult to maintain. What happens when

a person stops owning a book?

5

Aggregation

• A subset of association

• Implies that the life-time of Person does
NOT determine the life-time of the Book
object it holds

• A book may be “owned” by a person, but
that same book might also belong to the
library
• If Person quits the library (the Person object is

destroyed) the Book still exists for the library

6

Composition

• Part of aggregation

• Implies that the life-time of Person
determines the life-time of the eBook
object it holds

• When the person object is destroyed,
that specific DRMed eBook is also
destroyed as it is specific to the person
who bought it

7

Aggregation vs Composition

8

• A Company is an aggregation of People
• A Company is a composition of Accounts
• If the Company closes, the Accounts cease to exist, but the People still

do.

Inheritance

• Arrows point from the derived (child)
class to the base (parent) class
• An “is a” relationship
• A Professor is a Person, and a

Student is a Person
• All derived classes have copies of the

Person object
• Can only access protected or public

members from the base class (C++)

9

Generalization

10Moving members to a more generic class

Specialization

11Moving members from a base to a derived class

Realization

• We inherit from an interface
• In python we call this an abstract base

class

• An interface it not not used directly,
but instead serves as a blueprint for
similar classes

• When we inherit from an interface, we
then are required to implement the
functions for our base class to ensure
behaviors are present in derived
classes

12

Favor Composition over Inheritance

• Inheritance and composition both serve an important role in OOP

• However, when we use inheritance, we are tightly coupling the base
(parent) and derived (child) classes together

• If used improperly, inheritance can result in complicated class
hierarchies or a “sub-class” explosion

• An object that is composed of other objects to represent specialized
behavior can be used to mitigate this issue (Design Patterns)

13

The Sub-Class Explosion

• Let’s assume we have some logging classes where each one logs to a
different source
• We get a request to add a logger that can filter only very important

error messages

14

The Sub-Class Explosion

• Let’s assume we have some logging classes where each one logs to a
different source
• We get a request to add a logger that can filter only very important

error messages
• Now we need a variation of each class to support filtering
• This becomes unmanageable very quickly

15

