
Classes Relationships
Diagramming with UML
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Classes
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Private Member (usually a “-” sign)  

Public Member (usually a “+” sign)  

Protected Member (usually a “#” sign)  



Dependency

• An object of one class uses an object 
of another class in a method

• Usually as a parameter to a method 

• The object is used but is not stored 
in the class
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Association – Unidirectional

• An object of one class contains an 
object of another class as a data 
member

• The *’s are known as multiplicity.
• a book can be owned by any number of 

people
• a person can own any number of books
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Association – Bidirectional

• Two classes each contain an object of 
the others type as a data member

• In this case a person lists the books they 
own while the book also lists people 
that own it

• Most often this is not an ideal 
relationship to have
• Difficult to maintain. What happens when 

a person stops owning a book?
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Aggregation

• A subset of association

• Implies that the life-time of Person does 
NOT determine the life-time of the Book 
object it holds

• A book may be “owned” by a person, but 
that same book might also belong to the 
library
• If Person quits the library (the Person object is 

destroyed) the Book still exists for the library
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Composition

• Part of aggregation

• Implies that the life-time of Person 
determines the life-time of the eBook 
object it holds

• When the person object is destroyed, 
that specific DRMed eBook is also 
destroyed as it is specific to the person 
who bought it
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Aggregation vs Composition
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• A Company is an aggregation of People
• A Company is a composition of Accounts
• If the Company closes, the Accounts cease to exist, but the People still 

do.



Inheritance

• Arrows point from the derived (child) 
class to the base (parent) class
• An “is a” relationship
• A Professor is a Person, and a 

Student is a Person
• All derived classes have copies of the 

Person object
• Can only access protected or public 

members from the base class (C++)
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Generalization

10Moving members to a more generic class



Specialization

11Moving members from a base to a derived class



Realization

• We inherit from an interface
• In python we call this an abstract base 

class

• An interface it not not used directly, 
but instead serves as a blueprint for 
similar classes

• When we inherit from an interface, we 
then are required to implement the 
functions for our base class to ensure 
behaviors are present in derived 
classes
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Favor Composition over Inheritance

• Inheritance and composition both serve an important role in OOP

• However, when we use inheritance, we are tightly coupling the base 
(parent) and derived (child) classes together

• If used improperly, inheritance can result in complicated class 
hierarchies or a “sub-class” explosion

• An object that is composed of other objects to represent specialized 
behavior can be used to mitigate this issue (Design Patterns)
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The Sub-Class Explosion

• Let’s assume we have some logging classes where each one logs to a 
different source
• We get a request to add a logger that can filter only very important 

error messages
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The Sub-Class Explosion

• Let’s assume we have some logging classes where each one logs to a 
different source
• We get a request to add a logger that can filter only very important 

error messages
• Now we need a variation of each class to support filtering
• This becomes unmanageable very quickly
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