Classes Relationships

Diagramming with UML

O String name
O Date birthDate

© String getName()
© void changeName(String)
© boolean isBirthday()

© Public Member (usually a “+” sign)
<> Protected Member (usually a “#” sign)

“o

[] Private Member (usually a “-” sign)

@ Book

O String title
O String[] authors

© String getTitle()
© String[] getAuthors()
© void addAuthor(String)

@ Person

Dependency

O String name
O Date birthDate

. . © String getName
* An object of one class uses an object —_— ghgangeNarf,)e(smng)

of another class in a method © boolean isBirthday()
© void readBook(Book)

* Usually as a parameter to a method

Book
* The object is used but is not stored @ °°
in the class O String title

O String[] authors

© String getTitle()
© String[] getAuthors()
© void addAuthor(String)

Association — Unidirectional

* An object of one class contains an
object of another class as a data
member

* The *’s are known as multiplicity.

* a book can be owned by any number of
people
* a person can own any number of books

@ Person

O String name
O Date birthDate
[0 Book[] owns

© String getName()

© void changeName(String)

© boolean isBirthday()

*

*

v
@ Book

O String title
O String[] authors

© String getTitle()
© String[] getAuthors()
© void addAuthor(String)

A

Association — Bidirectional

* Two classes each contain an object of
the others type as a data member

* In this case a person lists the books they
own while the book also lists people
that own it

* Most often this is not an ideal
relationship to have

* Difficult to maintain. What happens when
a person stops owning a book?

@ Person

O String name
0 Date birthDate
0 Book[] owns

© String getName()
© void changeName(String)
© boolean isBirthday()

*

*

@ Book

O String title
O String[] authors
0 Person[] owners

© String getTitle()
© String[] getAuthors()
© void addAuthor(String)

Aggregation
* A subset of association

* Implies that the life-time of Person does
NOT determine the life-time of the Book
object it holds

* A book may be “owned” by a person, but
that same book might also belong to the
library

 If Person quits the library (the Person object is
destroyed) the Book still exists for the library

@ Person

O String name
0 Date birthDate
[0 Book[] owns

© String getName()
© void changeName(String)
© boolean isBirthday()

1T
v
@ Book

O String title
O String[] authors

© String getTitle()
© String[] getAuthors()
© void addAuthor(String)

@ Person

Composition

O String name
O Date birthDate
0 eBookDRM[] owns

* Part of aggregation o String getName()

© void changeName(String)
© boolean isBirthday()

* Implies that the life-time of Person 1
determines the life-time of the eBook
object it holds !
eBookDRM
* When the person object is destroyed, @ _
that specific DRMed eBook is also = 2::;23[;'25th0r3
destroyed as it is specific to the person . .
h b ht it o] Str!ng getTitle()
WnNo DOoug @ String[] getAuthors()
© void addAuthor(String)

7

Aggregation vs Composition

N

@Company @Accounts @People

A Company is an aggregation of People
* A Company is a composition of Accounts

* If the Company closes, the Accounts cease to exist, but the People still
do.

3

Inheritance

@ Person

* Arrows point from the derived (child) =nronane
class to the base (parent) class

© String getName()

. . . @ void changeName(String)

* An “is a” relationship o void isBirthday(String)
* A Professor is a Person, and a

Student is a Person
 All derived classes have copies of the @ S @ ——

Person object

_ O String[] publications 0 Double GPA

* Can only access protected or public | String[] getPubs() o Double gotGPA()

members from the base class (C++)

Generalization

@ Professor

© Person

< String name

O String name
O String[] publications

@ Student

© String getName()
© void changeName(String)

@ String[] getPubs()
© String getName()
© void changeName(String)

O String name
00 Double GPA

© Double getGPA()
© String getName()
© void changeName(String)

@ Professor

0O String[] publications

@ Student

@ String[] getPubs()

0 Double GPA

@ Double getGPA()

Moving members to a more generic class

10

Specialization

- @ Person
@ Person

< String name

< String name .
< Datel[] officeHours © String getName()

- @ void changeName(String)
© String getName() ,
@ void changeName(String)

© Date[] getOfficeHours()

ﬁ K © Professor

@ Student
@ Professor @ Student O String[] publications
0 Date[] officeHours 0 Double GPA
i licati Double GPA
2B I Sthalloi o String[] getPubs() o Double getGPA()
@ String[] getPubs() ® Double getGPA() © Date[] getOfficeHours()

Moving members from a base to a derived class 11

Realization

 \We inherit from an interface
* In python we call this an abstract base

class

* An interface it not not used directly,
but instead serves as a blueprint for

similar classes

* When we inherit from an interface, we
then are required to implement the
functions for our base class to ensure
behaviors are present in derived

classes

@ Person

© String getName()
© void changeName(String)

/ﬁ v\

/
@ Professor

N
@ Student

O String name
O String[] publications

O String name
O Double GPA

© String[] getPubs()
© String getName()
© void changeName(String)

© Double getGPA()
© String getName()
© void changeName(String)

12

Favor Composition over Inheritance

* Inheritance and composition both serve an important role in OOP

* However, when we use inheritance, we are tightly coupling the base
(parent) and derived (child) classes together

* If used improperly, inheritance can result in complicated class
hierarchies or a “sub-class” explosion

* An object that is composed of other objects to represent specialized
behavior can be used to mitigate this issue (Design Patterns)

The Sub-Class Explosion

* Let’s assume we have some logging classes where each one logs to a
different source

* We get a request to add a logger that can filter only very important
error messages

PN

@ Logger

@SocketLogger

© __init__(text_file)
© log(message)

@SysLogLogger

© __init__(socket)
© log(message)

© __init__(priority)
© log(message)

14

The Sub-Class Explosion

* Let’s assume we have some logging classes where each one logs to a
different source

* We get a request to add a logger that can filter only very important
error messages

* Now we need a variation of each class to support filtering

* This becomes unmanageable very quickly

@ Logger

il

@ FilteredLogger

==

© __init__(text_file)

© log(message)

@SocketLogger

@FilteredSocketLogger

@SysLogLogger

(e} init

@FilteredSysLogLogger

(text_file, pattern)
o log(message)

© __init__(socket)

© log(message)

© log(message)

© __init__(socket, pattern)

© __init__(priority)

© log(message)

© __init__(priority, pattern)

© log(message)

15

