Object Oriented
Programming Concepts

(OOP for short)



What is OOP?

* A programming approach that breaks down a problem into objects
and focuses on the interactions between objects

* Terminology:
e Class — the code you write to define an object and its properties
* Object — an instance of the class populated with specific state
e Attributes or data members — hold data or “state” of the object
* Methods or member functions — actions the object can perform

* Why Objects?

* |f we can keep the data and the operations that manipulate it together our
code should be re-usable and easier to debug/maintain.



Four Pillars of OOP

* Encapsulation
e Abstraction
* Inheritance

* Polymorphism



Eour Three Pillars of OOP

* Encapsulation
e Abstraction

* Inheritance

* Polymorphism

NOTE: Sometimes people
may refer to this as the Three
Pillars where Encapsulation
includes Abstraction



Encapsulation

* The bundling of data with the methods that operate on that data

* Some definitions also include information hiding
* hide the internal representation, or state, of an object from the outside

* Control access to data members or methods from other code
e private, public, protected access specifiers (C++/CH/lava/etc.)
* Python doesn’t have access specifiers

* Implementation level



Abstraction

* Deciding how external code interacts with your object
* Represents the interface to your object

* Limits the amount of required implementation knowledge for use of an
object

 What can an object do, not HOW the object do it

* Design level



Inheritance

* Deriving a new class that inherits the properties (data members and
methods) of the already exist class

* Base Class (parent) -> Derived Class (child)

* Supports the concept of code reusability and reduces the length of the
code in object-oriented programming

* When one or more objects might be the same...but different

e With great power comes great responsibility (more on this later)
e Consider the “is a” relationship



1 class Animal:
2 def __init__ (self, sound):
. 3 self.sound = sound
4
Inheritance Example S |
6 print(f"Animal says: {self.sound}")
* Animal is the base class ! .
8 class Dog(Animal):
. . g def _init_ (self):
° Dog IS the derlved ClaSS 10 super().__init__ ("Woof")
11
12 def speak(self):
. . 13 print(f"Dog says: {self.sound}")
* ADog is a Animal 14
15 def roll over(self):
16 print("Dog rolls over.")
17
* Dog has all the members of Animal, 13 Serimuini) ,
. . 19 my_chicken = Animal("Cluck")
but also can have its own functions 20 my_chicken. speak ()
. 21
like roll _over(). = e
23 my_dog.speak()
24 my_dog.roll_over()
25
26 if _name_ = "__main__":
27 main()

(00



Polymorphism

* From Greek — “Many Forms”
* The condition of occurring in several different forms

* Software Design
* Assingle interface to entities of different types

* We get the same interface for different types
* The code that runs, depends on the type



Static Polymorphism

* Determined at compile-time

* Occurs with:
 Templates (C++)
* Overloading (function and operator)

C/C++ Overloading
int library write open(int fd);
int library write_open(FILEx file);

int library write_open(const charx filename);

int library write open(charsk buffer, size tx size);

10



Static Polymorphism

* Determined at compile-time
Python Overloading

@singledispatch

e Occurs with: der addiasl byn

raise NotImplementedError(f"Unsupported type: {type(a)}")
 Templates (C++)
@add.register(int)

* Overloading (function and operator) ¢ (2 b):
* Limited support with Python modules pIEiEl )

@add.register(str)
def _(a, b):
print(a + b)

@add.register(list)

def _(a, b):
print(a + b)

11



1 class Animal:
2 def __init_ (self, sound):
3 self.sound = sound
4
Dynamic Polymorphism N (S
6 print(f"Animal says: {self.sound}")
* Determined at run-time ! .
8 class Dog(Animal):
9 def init_ (self):
10 super().__init__ ("Woof")
. . . 11
 Used with inheritance = I
13 print(f"Dog says: {self.sound}")
14
_ . 15 def roll over(self):
* Derived class overrides a base class 16 print("Dog rolls over.")
. 5 7
function {8 watimsint):
19 my_chicken = Animal("Cluck")
20 my_chicken.speak()
21
* Dog speak() overrides Animal speak() 22 my_dog = Dog()
. Lo 23 my_dog.speak()
* You can call base class functions within 24 Cdoairol avert)
the derived class using super() as in the 25
HIP- H 26 1 T == " 1 i
Dog class __init__ () function i e e
- - main()

12

N
o



