
Object Oriented 
Programming Concepts

(OOP for short)

1



What is OOP?

• A programming approach that breaks down a problem into objects 
and focuses on the interactions between objects

• Terminology:
• Class – the code you write to define an object and its properties
• Object – an instance of the class populated with specific state
• Attributes or data members – hold data or “state” of the object
• Methods or member functions – actions the object can perform

• Why Objects?
• If we can keep the data and the operations that manipulate it together our 

code should be re-usable and easier to debug/maintain.
2



Four Pillars of OOP

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

3



Four Three Pillars of OOP

• Encapsulation
• Abstraction

• Inheritance

• Polymorphism

4

NOTE: Sometimes people 
may refer to this as the Three 
Pillars where Encapsulation 
includes Abstraction



Encapsulation

• The bundling of data with the methods that operate on that data

• Some definitions also include information hiding
• hide the internal representation, or state, of an object from the outside

• Control access to data members or methods from other code
• private, public, protected access specifiers (C++/C#/Java/etc.)
• Python doesn’t have access specifiers

• Implementation level

5



Abstraction

• Deciding how external code interacts with your object

• Represents the interface to your object

• Limits the amount of required implementation knowledge for use of an 
object

• What can an object do, not HOW the object do it

• Design level

6



Inheritance

• Deriving a new class that inherits the properties (data members and 
methods) of the already exist class
• Base Class (parent) -> Derived Class (child)

• Supports the concept of code reusability and reduces the length of the 
code in object-oriented programming

• When one or more objects might be the same...but different

• With great power comes great responsibility (more on this later)
• Consider the “is a” relationship

7



Inheritance Example

8

• Animal is the base class
• Dog is the derived class

• A Dog is a Animal

• Dog has all the members of Animal, 
but also can have its own functions 
like roll_over().



Polymorphism

• From Greek – “Many Forms”
• The condition of occurring in several different forms

• Software Design
• A single interface to entities of different types

• We get the same interface for different types
• The code that runs, depends on the type

9



Static Polymorphism

• Determined at compile-time

• Occurs with:
• Templates (C++)
• Overloading (function and operator)

10

C/C++ Overloading



Static Polymorphism

• Determined at compile-time

• Occurs with:
• Templates (C++)
• Overloading (function and operator)

• Limited support with Python modules

11

Python Overloading



Dynamic Polymorphism
• Determined at run-time

• Used with inheritance

• Derived class overrides a base class 
function

• Dog speak() overrides Animal speak()
• You can call base class functions within 

the derived class using super() as in the 
Dog class __init__() function

12


