
Software Design

1



Layers of a Software System
• Statement
• x = 10

• Method/Function
• def average(number_list):

• Class/File
• class WebScraper:

• Namespace/Directory
• from Crypto.Hash import SHA256

• Subsystem
• PDF Export

• System
2

Software Design 
can occur at all 
levels!



What is Software Design?

• Software design is the process of defining software methods, 
functions, objects, and the overall structure and interaction of your 
code so that the resulting functionality will satisfy user requirements 
[source].

• Usually Occurs in two levels
• High-Level Design (HLD)
• Low-Level Design (LLD)

3

https://sea.ucar.edu/best-practices/design


High-Level Design (HLD)

• Close to Analysis

• Overall System Design

• Includes Architecture
• Determining what exactly is important
• Having a shared understanding of the system design

• Represents solution to requirements

4



Low-Level Design (LLD)

• Close to Code

• Detailed descriptions of every module

• Expressed in the design of the classes and methods

5



Types of Design

• Structured design
• From structured programming
• More linear in nature
• Concerned with individual modules of functionality

• like you might in the C language
• What are the functions?

• Object-oriented design
• From object-oriented programming
• More interested with abstractions and their interactions
• What are the classes?

6



Classes

• A way to bundle data and functionality together

• Define a new type of object and instances of that object can be 
created

• Each class instance can have attributes attached to it for maintaining 
state

• Class instances can also have methods (defined by its class) for 
modifying its state

7



Class Design

• What classes should exist?
• What should they be named? (way harder than you’d think…)
• What are the methods of the class?
• Names
• Parameters
• Return types
• Method specifiers

• const, static, virtual, friend, etc.
• Access

• public, private, protected
• Technically Python doesn’t have these like C/C++ does

• Relationship to other classes (more on this later)
8



Target Audience for Design Decisions

• You as a developer

• Other developers

• You again in a few months

• The other developers again in a few months

• Future developers

9



Informally, what indicates a good design?

• Easy to add features

• Easy to determine source of bugs

• Easy to fix bugs

• Has the required efficiency

• Has the required security

• Handles errors safely

10



Why does bad design occur?

• Design primarily involves making choices between tradeoffs

• Design decisions are often made before the problem is fully understood

• Incomplete knowledge by current and previous software engineers

• Requirements changes since design was made

• Security requirement changes since the design was made

11



Features of Good Design

• Consistent, shared vocabulary

• Simplicity

• Clear roles

• High cohesion

• Low coupling

12



Cohesion and Coupling

• Cohesion:
• The degree to which the elements inside a module belong together
• Represents the clarity of the responsibilities of a module

• Coupling:
• The dependence two (or more) classes/modules have each other

Cohesion is within a class/module while coupling is between 
modules/classes.

13


