Coding Style

Code

* Developers read code much more than they write code
* In the long run, there is no "your code" and "my code”
e Often, the code is the only documentation of the design

 Common coding style/coding standard is necessary

Essential Parts of Coding Style
* Indentation

* Newlines

* Whitespace

 Comments/DocStrings

* Naming conventions

Characteristics of a Coding Style

* Consistency - does our code adhere to regular expected stylistic
patterns

* Scalability - does the chosen style work as the size of the code
Increases

* Maintainability - does the style support clarity in the code such that
making changes or bug fixes can be done efficiently

def named_greeting(name):
print(f"Hello {name}!")

def shoutNamedGreeting(name):
print(f'Hello {name.upper()}")

O© 00 N O UL B WIN B

def main():
10 Firstperson="Maya"
. 11 second_person ="Addison"
| NCONSI Ste N Cy 12 named_greeting(Firstperson)
13 shoutNamedGreeting(second_person)
14
15
16
17 if __name__ == "__main__"
18
19
20 main()
21
22

N
w

Scalability

/% NOW INITIALIZATION TO FILL DUMMY LEVELS, TOP LEVEL, AND UNUSED PART OF TOP*/

/* LEVEL AS REQUIRED.
INIT: MINF= {48) *0°'B:
PINP= (48) *1°B;
DO L= 0 TO 4094; T(L) = END;
DO L= 0 TO 2499; T(L$4095) V(L); END;
DO L=6595 TO 8190; T(L) = END;
KO: K = -1;
K1: I = 0: /* @
K3: J = 2%I41; /*SET J TO SCAN BRANCHES FROM NODE I.
K7: IP T(J) <= T(J+1) /*PICK SMALLER BRANCH
THEN @ /*
(9)po; /*
K112 T(I) = T(J); /*REPLACE
K13: IF T(I) = PINP THEN 50 TO K16; /*IFP INFINITY, REPLACENMENT
/* IS FINISHED
K12: I =1J; /*SET INDEX FOR HIGHER LEVEL
END: /%
ELSE /*
DO; /*
K11A: T{I) = T(I+1); /%
K13A: IF T(I) = PINP THEN GO TO K16; /%
K12As I = J41; /*
END; /*
K14: IF 2*I < 8191 THEN GO TO K3: /*GO BACK IF NOT ON TOP LEVEL
K152z T(I) = PINF; /*IF TOP LEVEL, PILL WITH INPINITY
K162 IF T{0) = PINP THEN RETURN; /*TEST END OF SORT
K17: IF T(0) = MINP THEN GO TO K1; /*FLUSH OUT INITIAL DUMMIES
K18: K = K41; /*STEP STORAGE INDEX
V(K) = T(0); GO TO 51;() /*STORE OUTPUT ITEM

END QLTSRT7;

+ o

A
]
|
|
[

+
8

<---

o' 4

Scalability

auto value=xbegin; // pivot value is the first element

auto left = begin;
auto right= std::prev(end);
while (std::distance(left,right)>0) {

// move left-to-right while value is greater than elements
while(value>= xleft && std::distance(left, end) > 0){
if (std::next(left) == end)
break;

left=std: :next(left);

// move right-to-left while value is less than elements
while (value <xright)

{
right= std::prev(right);

// exchange so elements less than value are on the left
// and elements greater than value are on the right
std::swap(xleft, *right);

std::swap(xbegin,*right); // exchange pivot and final location

// post-condition
assert(std::all_of(begin, right, [right]l(int n){ return n <= xright; }));
assert(std::all_of(right, end, [right] (int n){ return n >= xright; }));

/ kskkskokskokskokskokskskskskokskokskokskokskokskokskskskskokskokskokskoskskskokskokskokskok sk sk kok ok
%
* myCoolFunction
%
* This is my cool function. Isn't it cool?
* X

° ff' ‘ ° o **/
DitTicult to Maintain

/%

* My Cool Function

%k
* This is my cool function. Isn't it cool?
%

*/

Difficult to Maintain

() /7/7aLTy yos ...

(2) OLTSRT7: PROCEDURE (V) ;

®

O)
®

/t#ttt*ttt#tt‘*tt##**##t**#.#‘#t*t.#‘#“#*tttt‘t#ttt##““‘#““.“‘C‘tt“tt/

/%¥A SORT SUBROUTINE FOR 2500 6-BYTE PIELDS, PASSED AS THE VECTOR V. A */
/*SEPARATELY COMPILED, NOT-MAIN PROCEDURE, WHICH MUST USE AUTOMATIC CORE */
/*¥ALLOCATION. */
/* *x/
/*THE SORT ALSORITHM FOLLOWS BROOKS AND IVERSON, AUTONATIC DATA PROCESSING,*/
/*PROGRAM 7.23, P. 350. THAT ALGORITHM IS REVISED AS FOLLOWS: */
/¥ STEPS 2-12 ARE SIMPLIFIED FOR M=2. */
/* STEP 18 IS EXPANDED TO HANDLE EXPLICIT INDEXING OF THE OUTPUT VECTOR. */
/* THE WHOLE FIELD IS USED AS T'HE SORT KEY. */
/* MINUS INFINITY IS REPRESENTED BY ZEROS. */
/¥ PLUS INFPINITY IS REPRESENTED BY ONES. */
/¥ THE STATEMENT NUMBERS IN PROG. 7.23 ARE REPLECTED IN THE STATEMENT */
/% LABELS OF THIS PROGRAMN. */
/*¥ AN IF-THEN-ELSE CONSTRUCTION REQUIRES REPETITION OF A FEW LINES. */
/[* */

/*TO CHANGE THE DIMENSION OF THE VECTOR TO BE SORTED, ALWAYS CHANGE THE */
/*INITIALIZATION OF T. 1IF THE SIZE EXCEEDS 4096, CHANGE THE SIZE OF T,T00.*/

/*A MORE GENERAL VERSION WOULD PARAMETERIZE THE DINENSION OF V. */

it */

/*THE PASSED INPUT VECTOR IS REPLACED BY THE REORDERED OUTPUT VECTOR. */

/““..#“*‘*‘““‘#““““"‘.‘#“.“.““““““.‘“““““.“““t““/

(6) /* LEGEND (ZERO-ORIGIN INDEXING) */
DECLARE

(H, /*INDEX POR INITIALIZING T */

I /*INDEX OF ITEM TO BE REPLACED */

3, /#INITIAL INDEX OF BRANCHES FROM NODE I s/

K) BINARY PIXED, /*INDEX IN OUTPUT VECTOR */

(MINF, /*MINUS INFINITY */

PINF) BIT (48), /*PLUS INPINITY */

V (¥) BIT (%), /*PASSED VECTOR TO BE SORTED AND RETURNED */

T (0:8190) BIT (48); /*WORKSPACE CONSISTING OF VECTOR TO BE SORTED, PILLED*/

/%OUT WITH INFINITIES, PRECEDED BY LOWER LEVELS */

/*FILLED UP WITH MINUS INPINITIES */

LA A AP T TmME AS P A smE i s ST E ® e smcsses = e e eaa - -—— e = emes - - e emMtccmme mea o aa maama o

9

Problems with a Coding Standard

* Lack of formal training

* Programming language differences

* Difficult to formally define/check/correct
e Difficult to maintain

* Lots of corner cases

* Preference arguments

* “bike shed painting”

 NOTE: Python helps to alleviate some of these issues with PEP 8, but
it still allows enough room for judgement calls

https://queue.acm.org/detail.cfm?id=1557897

Indentation and Whitespace

* Indentation must be consistent

* Indentation should appear consistent, even when moved out of the
IDE, e.g., Gists, web examples etc.

* Indentation is based on "flow of control", not importance/difficulty

Indentation Composition

How much to indent for each level? 2? 4? 87
* PEP 8says 4

What is the indentation made up of? spaces? tabs? tabs/spaces?
* PEP 8 says spaces

Problem: Most of the time, can't tell by looking
Problem: Lack of understanding of what a tab (and tab stop) is.

Confusion: Developers who use spaces to indent often have the editor expand
tabs to spaces

Inconsistent Indentation

* Don't mix tabs and spaces for the indentation on different lines or the
same line (with Python this is actually a problem for the interpreter)

* Many of the advantages of tabs have been replaced by IDE features.

 Just use spaces llvm coding standard, especially with code that may get used
in multiple projects

* If you are going to use tabs, only use them for flow-of-control
indentation, and not to line things up

* Indentation level: 4 is PEP 8 but Google is 2...why might that be?

https://llvm.org/docs/CodingStandards.html

_ W N -

Inconsistent Indentation

¥ PEP 8
foo = 10 function name(var one, var_two,

‘ I J\/\’\/T\/\/\ VN AWNAS W\. \.W.N\,W\.

var ~_three, var_four)

WVNANTNNANSNNNY WVNANSTANAN Y

PEP 8
foo = long_function_name (
var_one, var_two,

| WNANT NN WVNANT A

var_three, var_four)

CSIONASNANAIASINIT '\A/‘M'\A/‘I\

14

Newlines

* Single newlines are sufficient to break up related code content
* PEP 8 even states that each Python file must end with one blank newline

* Multiple newlines are not needed, except in the case of function
definitions

e PEP 8 dictates two newlines before each function definition

* Again, consistency

Whitespace

area = width * height;

e Spaces before parentheses

* For control flow statements

 NOT for functions
e print(“hello”) not print (“hello”)

* Space around operators
* PEP 8 States: assignment, comparison, and Boolean operators
* Arithmetic operators is officially left to person preference (BUT BE CONSISTENT)

16

https://llvm.org/docs/CodingStandards.html

Comments

* Code is written in paragraphs, chunks/hunks of code

* Comments appear before, indented the same, space after "#"

* Prefer line comments

* Use of DocStrings for File Headings/Classes/Functions

* There are multiple styles of DocString markup
* | use Google, but ReST is also popular

Summary

* Consistency, Consistency, Consistency
* Coding styles often reflect a compromise

* With existing code, adapt to the coding style of the existing
code/project

* Be open to updating your coding style over time

* There are much more important things in a project than minor coding
style decisions

