
Estimates

1



Issues with Estimates

• Difficult to do well

• Most often our estimates will be optimistic

• Generally, doesn’t consider the team dynamic
• Different skills, experience, coordination overhead, personalities, etc.

• Relative productivity is hard to measure without existing data

• Arbitrary increases to estimates is just a guess (back to square one)

2



Estimates…

• identify “approximately” how difficult a feature may be or how long it “might” take to 
complete

• reveal assumptions about the user stories (or other work item)
• Record the assumptions and get clarification from the customer

• help clarify user stories

• are done when the estimates converge, and a consensus is reached

• are less effective avoid when people focus on defending their choices rather than 
discussing thoughts and concerns

• should not be used against members of the team
3



Work Hours/Days

Pros:
+ Straightforward
+ Preferred to stakeholders with a 

more traditional business 
background

+ A precise unit, but not 
necessarily ”accurate”

+ Easier adjustments for teams 
that gain or lose members

Cons:
- Implies exactly when something 

will be finished
- Varies widely from person to 

person
- Time consuming estimation
- Open to more scrutiny from 

management
- Interruptions are generally not 

included in the estimate

4



Story Points

• An abstraction to hours or days worked
• Focused on the overall effort
• The raw values are unimportant (1, 2, 3… or 100, 200, 300… etc.
• Relative values ARE important (the ratio between the values)
• E.g., a story worth 2 points should be twice the effort as a story estimated at 1 

and two-thirds the effort of a story estimated at 3 (and so on).
• Must include everything that affects the effort
• Amount of work to do
• Complexity
• Risk or Uncertainty

5



Story Points

Pros:
• Tend to be more accurate 

estimates
• Reduce planning time
• Points values stay constant, but the 

number of points delivered during 
an iteration can change
• Effort not time is easier to commit 

to

Cons:
• Point are imprecise
• Work best when you have a stable 

team
• Can be misused (or used to assign 

“blame”)
• Management tends to care about 

their bottom-line: hours and 
dollars
• Initially more difficult to estimate 

points per iteration

6



Planning Poker

• Each team member gets a small set of cards used to estimate some 
unit of work
• Each member picks a card and keeps it value hidden
• Cards are revealed AFTER everyone has chosen their estimate value
• If everyone has revealed the same card (a consensus is achieved) then 

that value becomes the estimate
• Otherwise, EVERYONE discusses their assumptions, concerns, etc. 

that lead to their estimate value
• After the discussion, another round of planning poker takes place 

until consensus is reached

7



Why Planning Poker?

• Replaces getting a verbal estimate from each developer (not ideal)

• Planning poker is a better way pick and reveal estimates

• Revealing estimations simultaneously reduces bias in the estimation 
process

• Easy to understand

• Can be used for days/hours or story points

8



Swimlane Estimation

• Create 8 columns and DO NOT 
LABEL THE COLUMNS
• Split all the work items among 

the developers and have them 
silently arrange them in the 
columns
• Indicate that Left-most is 

“easiest” and right-most is 
“hardest”

9



Swimlane Estimation

• Once everyone has placed their 
work items ask the team to 
review the board and silently
move any items if they disagree 
with the column choice
• Once this is finished ask the 

team to rate their confidence 
with the choices.
• If confidence is low, discuss and 

allow for changes

x x x x x x x x

x x x x x

x x

x

10



Swimlane Estimation

• Ask the team if they think they 
will get anything to work on that 
is smaller (easier) than the items 
in the left most column.
• If no, then the first column starts 

at 1 or 2
• If yes, then the first column starts 

at 3 or 5*

• Label the columns

1 2 3 5 8 13 20 !

x x x x x x x x

x x x x x

x x x

11*The increments are a modified Fibonacci sequence (after 20 is 40, 100, and then an unknown or infinity)



Swimlane Estimation

• The last column is usually a “!” 
or some other value to indicate 
that work item estimate is too 
large and needs refinement 
(usually deconstruction)

1 2 3 5 8 13 20 !

x x x x x x x x

x x x x x

x x x

12



Swimlane Estimation Guidelines

• If people can’t decide on a work item’s position, set it aside for discussion

• 5 is typically a “medium” sized story for an iteration

• Anything greater than 8-13 requires further decomposition

• Seriously consider also decomposing stories of size 8-13

• Anything greater than 20 is (in reality) an unknown needing further 
investigation and decomposition before it can be sized sensibly

13



Why Swimlane Estimation?

• Lack of talking and concrete numbers avoids the “anchoring” problem
• an individual speaks up with their view on what size a work item should be 
before the remainder of the team have selected their view on the size and 
influences/anchors all others estimates for related work items to a given point

• Faster than planning poker

• Works best with story points

14



What about productivity?!
Estimates only show roughly how must time/effort something might take, but not 
how much work you and your team can get done during an iteration.

15



Measuring Productivity

• For longer running projects (if there are good records) you can see 
the performance of past iterations and average the amount of work 
accomplished
• Using this historical data, we can calculate the velocity or average 

productivity of the team:
• Total hours/days/story points completed divided by the number of iterations 

• 200 hours / 4 iterations = 50 hours per iteration
• 75 days / 4 iterations = 18 days of work per iteration
• 96 story points / 3 iterations = 32 story points per iteration

• What if you don’t have any data…

16



Estimating Velocity in an Iteration

• HFSD states that a velocity of .7 is a safe starting point for your 
project
• Remember if you have a one-month iteration (30 days), after 

removing weekends and holidays we only have approximately 20 days
• With respect to total working days:
• 20 days * .7 velocity = 14 working days

• With respect to an iteration’s total user story estimates:
• 30 days / .7 = 43 days of work with velocity (too much for a 20-day iteration)
• Usually done this way as it’s more intuitive than ”removing” workdays.

• If you forget when to multiply or divide, with respect to estimates, 
the number should always increase. 17



DO NOT ALTER RECORDED 
ESTIMATES ON YOUR USER 
STORIES TO INCLUDE VELOCITY!
Adjusting your recorded estimates with velocity means you will need to change all 
your estimates again if/when velocity changes. Simply note the velocity used for 
your team.

18



Velocity can change due to…

• Project complexity
• Team size
• Uniformity in team membership
• Team ability to concentrate on user stories and activities
• System outages
• Lack of stakeholder engagement
• Unexpected absences in the team
• Etc.

19



Wait! What if I’m using story points?

• Since story points don’t necessarily map one-to-one to time you have 
to guess for the first few iterations
• Didn’t get everything done the first time? Depending how close you were you 

can try the same number of points again or less. DON’T ASSIGN MORE TO 
CATCH UP.
• Done way ahead of time? Assign more points to the next iteration.

• Once you have a few iterations done, then you can take that average 
and start to get more accurate
• The 0.7 starting velocity is just an estimate. Even with hours/days this 

can be wrong
• Remember that each iteration is a learning experience. If you record 

and use this information effectively, it does get easier over time.
20



The Value of Historical Data

21
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9

Velocity By Iteration



The Value of Historical Data

22
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9

Velocity By Iteration
Avg. Last 8 = 33 points 



The Value of Historical Data

23
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9

Velocity By Iteration
Avg. Last 8 = 33 points 

Avg. Top 3 = 36 points 



The Value of Historical Data

24
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9

Velocity By Iteration
Avg. Last 8 = 33 points 

Avg. Top 3 = 36 points 

Avg. Bottom 3 = 28 points 



Can we have a feature in X days? 

25

W
or

k 
or

ga
ni

ze
d 

by
 p

rio
rit

y



Can we have a feature in X days? 

26

Avg. Last 8 = 33 points 

Avg. Top 3 = 36 points 

Avg. Bottom 3 = 28 points 

W
or

k 
or

ga
ni

ze
d 

by
 p

rio
rit

y



Can we have a feature in X days? 

27

Avg. Last 8 = 33 points 

Avg. Top 3 = 36 points 

Avg. Bottom 3 = 28 points 

W
or

k 
or

ga
ni

ze
d 

by
 p

rio
rit

y

Probably



Can we have a feature in X days? 

28

Avg. Last 8 = 33 points 

Avg. Top 3 = 36 points 

Avg. Bottom 3 = 28 points Probably

W
or

k 
or

ga
ni

ze
d 

by
 p

rio
rit

y

Maybe



Can we have a feature in X days? 

29

Avg. Last 8 = 33 points 

Avg. Top 3 = 36 points 

Avg. Bottom 3 = 28 points Probably

W
or

k 
or

ga
ni

ze
d 

by
 p

rio
rit

y

Maybe

No


