Intro to Software Process



How do you develop software
NOW ?



Stakeholders vs. Developer

Stakeholders: Developer:
* How much will it cost? * Develop on budget
* How long will it take? * Develop on time

* Develop the “right” software




The Straightforward Approach
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Not quite...



Standard Software Development Phases

* Requirements

* Analysis

* Design

* Implementation

* Testing & Validation
* Release

* Maintenance



Software Development Artifacts

* Requirements - requirements specification
e E.g., user stories, use cases, all the way to 500-page requirements documents

* Analysis - task identification, viability testing

* Design - technical specification

* E.g., Quick class diagram (UML), sequence diagrams, extensive system design
documentation, plus more...

* Implementation - code

 Testing - test report, e.g., set of test cases, testing/acceptance report
* Release - executables, e.g., packages, installers

 Maintenance - patches, hotfixes, updates (distribution methods vary)



Waterfall

* Heavyweight, single-pass, heavy planning-based approach
* Each phase completed and verified before the next phase begins
* “Big Bang” Approach as described by the Head First book

* Requires extreme amounts of planning to be successful



Why Watertall?

* A response to the software crisis (~1960s):
* Projects running over-budget
* Projects running over-time
e Software was very inefficient
» Software was of low quality
* Software often did not meet requirements
* Projects were unmanageable and code difficult to maintain
* Software was never delivered

* Makes sense at first
* The predominant process for other engineering disciplines



Waterfall Weaknesses

* Assumes no overlap in phases

* Heavily disrupted by volatile requirements

* Requirements are almost always not fully known in advance, and often added
during the other phases

* Microsoft found that 30% of requirements originated after requirements
gathering

* Any design based on requirements documents must be considered temporary

* Not proved to be successful or produced low-quality software
e Success is a matter of “luck”



Workarounds: Design for Change

* Since requirements are volatile, just design to allow for future
changes

 Commonsense, but does require predicting the future, which we
cannot always do

 Very useful for low-level design: named constants, good method
abstractions, good class abstractions

* Increases flexibility, but that often increases complexity
* Increases cost of the initial software

* Fails to account for changes external to the software that affect the
process



Workarounds: Prototyping

* Difficult to determine requirements without some sort of running
system, so build a prototype to get requirements, e.g., “Build one to
throw away”

* Develop the first version cheaply: Very high-level languages, fewer
features (particularly non-functional requirements of speed,
robustness, quality)

* Still necessary to gather all requirements during the prototype

* Problem of perception that prototype as a completed system



The Iterative Software
Development Paradigm



Agile Software Development

* Lightweight, multiple pass, better balance between planning and
implementation

* Strongly iterative and evolutionary

* “World is fundamentally chaotic”, “Change is inevitable”, “Deliver
value to the customer”



Tenants of Agile Process

* Individuals and interactions are more important than processes and
tools

* Working software is more important than comprehensive
documentation

* Customer collaboration is more important than contract negotiation

* Responding to change is more important than following a plan



Waterfall vs Iterative Process
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Don’t Take My Word For It...

Waterfall Agile
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Requirement Changes with lterations

* New requirement is given

* Working with stakeholders to prioritize new requirements with
respect to the others

* Examine current iteration and adjust based on customer priority AND
time remaining
* If you have time, move things to a later iteration
* If you don’t, stakeholders need to either allow for more time or make cuts



