Intro to Software Process

How do you develop software
NOW ?

Stakeholders vs. Developer

Stakeholders: Developer:
* How much will it cost? * Develop on budget
* How long will it take? * Develop on time

* Develop the “right” software

The Straightforward Approach

Requirements Implementation Release

Here ore my rough ideas
o for you to get started on.
0

Some HTML, CSS, a hrtle
bockend Java._this will be
a piece of coke.

Whew! That was hard work!
T've been coding like crazy,
working stupid hours, but at
least now it's time to collect

Frantie sownds of toding
that paycheck..

What the lead dev

By Bangy work 3 lok, and then

BANG, somethny av.d
tomplen tomes wlh}‘ the work
/7 all 3t onee)
also knowm 3 *Qown Dark,” &
the Lustomer sees You at the
§ the project. and
hen you disappear entil sof tuave
s delwered at the nd

Image: Head First Software Development 2"¢ Edition

Not quite...

Standard Software Development Phases

* Requirements

* Analysis

* Design

* Implementation

* Testing & Validation
* Release

* Maintenance

Software Development Artifacts

* Requirements - requirements specification
e E.g., user stories, use cases, all the way to 500-page requirements documents

* Analysis - task identification, viability testing

* Design - technical specification

* E.g., Quick class diagram (UML), sequence diagrams, extensive system design
documentation, plus more...

* Implementation - code

 Testing - test report, e.g., set of test cases, testing/acceptance report
* Release - executables, e.g., packages, installers

 Maintenance - patches, hotfixes, updates (distribution methods vary)

Waterfall

* Heavyweight, single-pass, heavy planning-based approach
* Each phase completed and verified before the next phase begins
* “Big Bang” Approach as described by the Head First book

* Requires extreme amounts of planning to be successful

Why Watertall?

* A response to the software crisis (~1960s):
* Projects running over-budget
* Projects running over-time
e Software was very inefficient
» Software was of low quality
* Software often did not meet requirements
* Projects were unmanageable and code difficult to maintain
* Software was never delivered

* Makes sense at first
* The predominant process for other engineering disciplines

Waterfall Weaknesses

* Assumes no overlap in phases

* Heavily disrupted by volatile requirements

* Requirements are almost always not fully known in advance, and often added
during the other phases

* Microsoft found that 30% of requirements originated after requirements
gathering

* Any design based on requirements documents must be considered temporary

* Not proved to be successful or produced low-quality software
e Success is a matter of “luck”

Workarounds: Design for Change

* Since requirements are volatile, just design to allow for future
changes

 Commonsense, but does require predicting the future, which we
cannot always do

 Very useful for low-level design: named constants, good method
abstractions, good class abstractions

* Increases flexibility, but that often increases complexity
* Increases cost of the initial software

* Fails to account for changes external to the software that affect the
process

Workarounds: Prototyping

* Difficult to determine requirements without some sort of running
system, so build a prototype to get requirements, e.g., “Build one to
throw away”

* Develop the first version cheaply: Very high-level languages, fewer
features (particularly non-functional requirements of speed,
robustness, quality)

* Still necessary to gather all requirements during the prototype

* Problem of perception that prototype as a completed system

The Iterative Software
Development Paradigm

Agile Software Development

* Lightweight, multiple pass, better balance between planning and
implementation

* Strongly iterative and evolutionary

* “World is fundamentally chaotic”, “Change is inevitable”, “Deliver
value to the customer”

Tenants of Agile Process

* Individuals and interactions are more important than processes and
tools

* Working software is more important than comprehensive
documentation

* Customer collaboration is more important than contract negotiation

* Responding to change is more important than following a plan

Waterfall vs Iterative Process

' to
waijor desap-you've 4ot
How long would it I:rd:,. }rc\u{t‘w for every
take to try and get festure of the entive wo{:i
E_YEY "tﬂbm(M t take weeks or mow W
(‘ on 3 buy project? ah)
h Requirements Design

Complete v,
oF cath r{t

C“f“"

nnmg softuave ot ¢
'M-QM“C“:;M

"Are e deing OKP" offen

S

®

Code Test (what's dore)

An itevation tontains all the
stages of 2 complebe process

Q.80

Image: Head First Software Development 2" Edition

—

bin s
line evevy bt o‘
‘u»t{m !

Tha
Lest EVERYTHING
e o 5 o ek o b

This i the Fivst time that

Customer tan
be own, too And Tk et YO Feedhgy g " I You
ity. TONS of tode on t‘v;“"t:c vensivements vight oo
(3
N

Code

~
Tost /-

Final Software Out

c

Sofbwave gels bigger
and more Lomplete with
cath itevation and alio
fackors in what the

ustomer didn't like n
U.(previows vtﬂ'itm

5

Too late to make
:"Y""" Ehvs had

(4
bekter be vight

R DllC||T

Final Software Out
c

T\A

Q._._¢©

(P

You've thetked this sof buave at
the end of every itevation, to
there's 3 muth better chance this
i what the customer wants

16

Don’t Take My Word For It...

Waterfall Agile

)%
5175 o Successful

J4% Challenged
B Failed

Source: The CHAOS Manifesto, The Standish Group, 2012.

17

Requirement Changes with lterations

* New requirement is given

* Working with stakeholders to prioritize new requirements with
respect to the others

* Examine current iteration and adjust based on customer priority AND
time remaining
* If you have time, move things to a later iteration
* If you don’t, stakeholders need to either allow for more time or make cuts

