
Intro to Software Process

1



How do you develop software 
now?

2



Stakeholders vs. Developer

• How much will it cost?

• How long will it take?

• Develop on budget

• Develop on time

• Develop the “right” software

Stakeholders: Developer:

3



The Straightforward Approach

4

Requirements Implementation Release

Image: Head First Software Development 2nd Edition



Not quite…

5



Standard Software Development Phases

• Requirements
• Analysis
• Design
• Implementation
• Testing & Validation
• Release
• Maintenance

6



Software Development Artifacts

• Requirements → requirements specification
• E.g., user stories, use cases, all the way to 500-page requirements documents

• Analysis → task identification, viability testing 
• Design → technical specification

• E.g., Quick class diagram (UML), sequence diagrams, extensive system design 
documentation, plus more…

• Implementation → code
• Testing → test report, e.g., set of test cases, testing/acceptance report
• Release → executables, e.g., packages, installers
• Maintenance → patches, hotfixes, updates (distribution methods vary)

7



Waterfall

• Heavyweight, single-pass, heavy planning-based approach

• Each phase completed and verified before the next phase begins

• “Big Bang” Approach as described by the Head First book

• Requires extreme amounts of planning to be successful

8



Why Waterfall?

• A response to the software crisis (~1960s):
• Projects running over-budget
• Projects running over-time
• Software was very inefficient
• Software was of low quality
• Software often did not meet requirements
• Projects were unmanageable and code difficult to maintain
• Software was never delivered

• Makes sense at first
• The predominant process for other engineering disciplines

9



Waterfall Weaknesses

• Assumes no overlap in phases

• Heavily disrupted by volatile requirements
• Requirements are almost always not fully known in advance, and often added 

during the other phases 
• Microsoft found that 30% of requirements originated after requirements 

gathering
• Any design based on requirements documents must be considered temporary

• Not proved to be successful or produced low-quality software
• Success is a matter of “luck”

10



Workarounds: Design for Change

• Since requirements are volatile, just design to allow for future 
changes
• Commonsense, but does require predicting the future, which we 

cannot always do
• Very useful for low-level design: named constants, good method 

abstractions, good class abstractions
• Increases flexibility, but that often increases complexity
• Increases cost of the initial software
• Fails to account for changes external to the software that affect the 

process

11



Workarounds: Prototyping

• Difficult to determine requirements without some sort of running 
system, so build a prototype to get requirements, e.g., “Build one to 
throw away”

• Develop the first version cheaply: Very high-level languages, fewer 
features (particularly non-functional requirements of speed, 
robustness, quality)

• Still necessary to gather all requirements during the prototype

• Problem of perception that prototype as a completed system
12



The Iterative Software 
Development Paradigm

13



Agile Software Development

• Lightweight, multiple pass, better balance between planning and 
implementation

• Strongly iterative and evolutionary

• “World is fundamentally chaotic”, “Change is inevitable”, “Deliver 
value to the customer”

14



Tenants of Agile Process

• Individuals and interactions are more important than processes and 
tools

• Working software is more important than comprehensive 
documentation

• Customer collaboration is more important than contract negotiation

• Responding to change is more important than following a plan

15



Waterfall vs Iterative Process

16Image: Head First Software Development 2nd Edition



Don’t Take My Word For It…

17



Requirement Changes with Iterations

• New requirement is given

• Working with stakeholders to prioritize new requirements with 
respect to the others

• Examine current iteration and adjust based on customer priority AND
time remaining
• If you have time, move things to a later iteration
• If you don’t, stakeholders need to either allow for more time or make cuts

18


