
Data Structure Intro -
Dynamic Array Stack



Stacks

•When you add something to the stack, it’s pushed on top 
of stack
•When you take something off the the stack, it’s popped 

off



Header file

• The macros helps use avoid 
using magic numbers
• INIT_SIZE
• The number of things our stack 

can store will start at 10
• We’ll then dynamically adjust as 

we need to
• ERROR_MEMORY
• memory associated error code
• if we fail to malloc() / realloc() 

we’ll return with this error code



Construction of the stack

• A structure to keep track of the 
different components of the 
stack
• top
• An array is used
• Top is the index of the array

• size
• size of the array

• stack_data
• array storing characters



Creating a Stack

• Create and initialize a stack for use
• Create an instance of stack 

structure
• The stack begins with a size of 

INIT_SIZE
• Start the top index at negative one

• since that is not a valid array position
• Dynamically allocate memory for

the stack
• exit with ERROR_MEMORY value if 

malloc() returns a NULL pointer



Creating a Stack

stack_data

top = -1

size = 10

my_stack



Pushing items on top of stack

• Parameters
• Pointer to struct stack
• Item we want to push



Pushing items on top of stack

• Start by checking whether stack 
is full
• top of the stack would be equal to

the last index of array

• If stack is full
• double the current size
• dynamically resize array using 

realloc()



Pushing items on top of stack

• Increment stack top
• Assign element to stack top



Pushing items on top of stack

stack_data

top = -1
size = 10

my_stack



push(&my_stack, ’c’)

stack_data

top = 0
size = 10

my_stack

‘c’



push(&my_stack, ’s’)

stack_data

top = 1
size = 10

my_stack

‘c’ ‘s’



push(&my_stack, ’1’)

stack_data

top = 2
size = 10

my_stack

‘c’ ‘s’ ‘1’



push(&my_stack, ’1’)

stack_data

top = 3
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘1’



push(&my_stack, ’0’)

stack_data

top = 4
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘1’ ‘0’



Pop an item off the stack

• Pop an item off of the top of the 
stack
• removes an item from the stack 
• returns the value

• Precondition
• The stack must NOT be empty

• Postcondition:
• Stack will have one less item or be 

empty



Pop an item off the stack

• We can't remove an element 
from an empty list
• assert() check for the condition
• terminates if the condition

evaluates to false

• You can choose to print an error 
message and exit as well



Pop an item off the stack

• Store the current top element in 
variable data
• Decrement top and return the

data
• We don’t free up the memory
• mystack->top is keeping track of 

current top
• If elements are pushed, the old

value will be overwritten



Popping item from top of stack

stack_data

top = 4
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘1’ ‘0’



Popping item from top of stack (return ‘0’)

stack_data

top = 3
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘1’ ‘0’



Popping item from top of stack (return ‘1’)

stack_data

top = 2
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘1’ ‘0’



push(&my_stack, ‘2’)

stack_data

top = 3
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘2’ ‘0’



push(&my_stack, ‘0’)

stack_data

top = 4
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘2’ ‘0’



Display Items on Stack

• If the stack is empty, there are 
no values to print



Display Items on Stack

• Stack is a Last In First Out data 
structure
• Printing elements in order that

they’ll be popped



display_stack(&my_stack)

stack_data

top = 4
size = 10

my_stack

‘c’ ‘s’ ‘1’ ‘2’ ‘0’



display_stack(&my_stack)

• 0 ->TOP
• 2
• 1
• s
• c



Checking if Stack is Empty

• Stack can be implemented in 
different ways
• Top can indicate the index at 

which the next pushed item will 
be stored
• In that case initial top would be

0



Freeing Up Dynamic Memory

• Freeing up the dynamically
allocated array
• The other variables get cleaned 

up automatically since they’re 
on the stack


