
Sorting



Bubble Sort

• Locally sorts pair of items in the array
• The pair will be sorted if their order does not meet expectations
• The large values "bubble up" to the end of the array
• Visualize Bubble Sort

https://visualgo.net/en/sorting


Bubble Sort – Outer Loop

• Outer loop condition is crucial
• makes sure in the inner loop

where pairs of elements are
compared, it stops short of the last
element



Bubble Sort – Inner Loop

• As the loop progresses, the 
elements towards the end of the 
array are sorted



Bubble Sort – Swapping



Bubble Sort - Optimization

• If we didn't swap any values
• everything is already sorted
• we can break (quit) the loop early.



Selection Sort

• Selection Sort finds the smallest values in the array
• It then checks to make sure that there are no smaller values in the 

rest of the array
• When the smallest value is found, it is placed at the beginning of the 

array
• This process repeats moving the next smallest element in the array by 

one each iteration making the front of the array become a sorted 
portion that expands each iteration
• Visualize Selection Sort

https://visualgo.net/en/sorting


Selection Sort- Outer Loop

• Similar to Bubble Sort



Selection Sort- Outer Loop

• We are concerned with the
index, not the minimum element 
itself
• Important for when we’ll make 

the swap
• In bubble sort we were locally 

swapping adjacent elements



Selection Sort- Inner Loop

• j starts at i + 1
• The aim is to find from the

elements after i, a minimum value
witch which to swap the value at
position i
• This will swap the array up until 

the ith index



Selection Sort- Inner Loop

• Finding out the index of the 
minimum element



Selection Sort- Outer Loop

• Making the swap



Insertion Sort

• Insertion Sort starts by assuming the first element is already sorted.
• The next element is then compared to that sorted value. 
• If the next element is greater than the "sorted element" it stays 

where it is
• If it happens to be smaller, the sorted values are all shifted over to the 

right to make room for the value to be "inserted" in the correct spot
• Visualize Insertion Sort

https://visualgo.net/en/sorting


Insertion Sort – Outer Loop

• Insertion Sort starts by assuming 
the first element is already 
sorted.
• So, the outer loop starts at i = 1
• Element at array[i] is the first

element in the ‘unsorted’ part of
the array
• We store array[i] in value



Insertion Sort – Outer Loop

• The next element is then compared to 
that sorted value. 
• j is initialized at i – 1

• A while loop is used since multiple
conditions are sometimes harder to
read in a for loop
• Every element from j = i – 1 till 

j >=0 is compared against element at 
the ith position which we’re trying to 
insert
• If the elements being compared are 

greater than value we shift them to 
the right until we find a position 
where value can be inserted



Quick Sort

• qsort (Quick Sort) is a more 
efficient sort than what we have 
implemented
• We need to supply 
• the array
• the size of the array
• the size of the elements the array 

holds
• a function to compare the values 

to know which one is "bigger" or 
"smaller".



compare()

• We are passing a function to 
another function
• Functions have their own place

in memory
• The name of the function is its 

address in memory
• Parameters: two void pointers
• void pointers cannot be 

dereferenced
• Need to typecast


