Time Complexity and
Searching

Searching Algorithms

 Can be done one of two ways:

1. Checking each item to see whether that specific item contained within a
data structure (like an array)

2. Using a key (unique value) to look up an item (like an ID number)

 Very common problem inCS

* For large data structures we need efficient ways to find things

Time Complexity Analysis

* We don’t consider the “speed” of an algorithm, but instead the
number of steps to takes to accomplish the task.

» We need to know how many steps an algorithm will take based on
the size of itsinput
* |n our cases, we are considering arrays

Searching for an element in an array

* Worst Case Array

« The element is NOT in the array {1, 2,-10, 40 ,18}
 Every element must bechecked

* Take n steps (where n is the size
of the array)

Searching for an element in an array

» Worst Case Array
« The element is NOT in the array {1, 2,-10, 40 ,18}
* Every element must bechecked

* Take n steps (where n is the size
of the array)

* The amount of time requiredto time
perform the search grows
linearly with the size of the
input array.

number of elements (n)

Searching for an element in an array

e Best Case Array

» The element is ALWAYS thefirst {1, 2,-10, 40 ,18}
element in thearray

* No elements beyond thefirst
need to be checked

Searching for an element in an array

* Best Case

* The element is ALWAYS thefirst
element in thearray

* No elements beyond thefirst
need to be checked

* The best-case time isconstant
nomatter the size of the array

Array
{1, 2,-10, 40 ,18}

time

number of elements (n)

Binary Search

 Only works ona sorted array

* Algorithm:
* If the array has 0 elements return false
« Compare the middle element in the array to the target
* If they are equal, returntrue

« |If the target is less than the middle element, repeat the search on the
elements to the left ofthe middle

« If the target is greater than the middle element, repeat the search on the
element to the right of the middle

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}

Search for 42

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}
Search for 42

» Middleis 10, less than 42
« Repeat on { 18, 40,42}

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}
Search for 42

» Middleis 10, less than 42
« Repeat on { 18, 40,42}

Binary Search Example
£-10, 1, 2,10, [18, 40, 423

Search for 42

» Middleis 10, less than 42
« Repeat on { 18, 40,42}

» Middleis 40, less than 42
* Repeat on {42}

Binary Search Example
{-10,1,2,10, 18, 40,/42}

Search for 42

» Middleis 10, less than 42
« Repeat on { 18, 40,42}

» Middleis 40, less than 42
* Repeat on {42}

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}

Search for 42

» Middleis 10, less than 42
« Repeat on { 18, 40,42}

» Middleis 40, less than 42
* Repeat on {42}

« Middle is 42, returntrue

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}

Search for 42 Search for -30
» Middleis 10, less than 42

« Repeat on { 18, 40,42}

» Middleis 40, less than 42

* Repeat on {42}

« Middle is 42, returntrue

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}

Search for 42 Search for -30
» Middleis 10, less than 42 Middle is 10, greater than-30
« Repeat on { 18, 40,42} » Repeat on {-10, 1,2}

» Middleis 40, less than 42
* Repeat on {42}
« Middle is 42, returntrue

Binary Search Example
{-10, 1, 2,/10, 18, 40, 42}

Search for 42 Search for -30
» Middleis 10, less than 42 Middle is 10, greater than-30
« Repeat on { 18, 40,42} » Repeat on {-10, 1,2}

» Middleis 40, less than 42
* Repeat on {42}
« Middle is 42, returntrue

Binary Search Example
£-10,1,2,110, 18, 40, 42}

Search for 42 Search for -30

- Middleis 10, less than 42 Middle is 10, greater than-30
* Repeat on {18, 40,42} * Repeat on { -10, 1,2}
 Middleis 40, less than 42 » Middle is 1, greater than-30
» Repeat on {42} * Repeat on {-10}

* Middle is 42, returntrue

Binary Search Example
{-10]1, 2, 10, 18, 40, 42}

Search for 42 Search for -30

» Middleis 10, less than 42 Middle is 10, greater than-30
« Repeat on { 18, 40,42} » Repeat on {-10, 1,2}

» Middleis 40, less than 42 « Middle is 1, greater than-30
* Repeaton {42} * Repeat on { -10}

« Middle is 42, returntrue

Binary Search Example
-10)1, 2, 10, 18, 40, 42}

Search for 42 Search for -30

- Middleis 10, less than 42 Middle is 10, greater than-30
* Repeat on {18, 40,42} * Repeat on { -10, 1,2}
 Middleis 40, less than 42 » Middle is 1, greater than-30

» Repeat on {42} * Repeat on {-10}

- Middle is 42, returntrue Middle is -10, greater than-30

* Repeat on {}

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}

Search for 42 Search for -30

» Middleis 10, less than 42 Middle is 10, greater than-30
« Repeat on { 18, 40,42} » Repeat on {-10, 1,2}

» Middleis 40, less than 42 « Middle is 1, greater than-30

* Repeaton {42} * Repeat on { -10}

 Middle is 42, returntrue Middle is -10, greater than-30

* Repeat on {}

Binary Search Example
{-10, 1,2, 10, 18, 40, 42}

Search for 42 Search for -30

» Middleis 10, less than 42 Middle is 10, greater than-30
« Repeat on { 18, 40,42} » Repeat on {-10, 1,2}

» Middleis 40, less than 42 « Middle is 1, greater than-30

* Repeaton {42} * Repeat on { -10}

 Middle is 42, returntrue Middle is -10, greater than-30

* Repeat on {}
« Empty array, return false

Binary Search in Code
0 | 1]| 2| 3 | 4] 5] 6| 7 |8
-40 -23 5 10 27 33 35 41 42

bool binary_search(int target, int *array, size_tsize)
*size=9

* middle = size /2 =4
 Odd array size give a truemiddle
 Even gives a value slightly left of middle

Binary Search in Code
0 | 1]| 2| 3 | 4] 5] 6| 7 |8
-40 -23 5 10 27 33 35 41 42

bool binary_search(int target, int *array, size_tsize)

* Searching for 5
» Middle (index 4) is 27, so we need to search the left half.

« return binary_search(target, array, middle)

* Next Search: -;O.?

Binary Search in Code
0 | 1] 23 | 4] 5|6 | 7|8
-40 -23 5 10 27 33 35 41 42

bool binary_search(int target, int *array, size_tsize)

* Searching for 41
* Middle (index 4) is 27, so we need to search the right half.

* return binary_search(target, array + middle + 1, size - middle - 1)

* Next Search: ??.4;.

Binary Search Worst Case Analysis

Size # of Calls to Binary
Search (worst case)

2”3 8 5

Binary Search Worst Case Analysis

Size # of Calls to Binary
Search (worst case)
2”3 8 5

274 16 6
2”5 32

Binary Search Worst Case Analysis

Size # of Calls to Binary
Search (worst case)

2”3 8 5
274 16 6
2”5 32 7

2" (logz(n)) n loga(n) +2

Binary Search Worst Case Analysis

Size # of Calls to Binary
Search (worst case)

2”3 8 5

2"4 16 6 time
2”5 32 7

2" (logz(n)) n loga(n) +2

number of elements (n)
Logarithmic Time Complexity!!!!

