Files

File

What is a file?
* a named sequence of bytes stored on a file storage device
* The name of a file is also called its path

File Path

* Full path - unambiguous full name of a file
* /Users/kbhowmik/Desktop/cs110 materials/code-examples/24-fileio/files.c

* Relative path - path relative to the current working directory

* Working directory
» /Users/kbhowmik/Desktop/cs110 materials/code-examples/24-fileio/

e file.c

* Working directory
* The current directory in the terminal
* the directory you have open in Finder or Windows Explorer
* Every running program has a working directory

Opening a file

#include <stdio.h>

int main() {
FILE xfp = fopen("input.

return 0;

Files must be opened by name
before reading or writing

 fopen(<filename>, <mode>)

* The filename and the mode are
strings (type const char *)

tx.tll’ il r.ll); o Modes
 "r'"—read
e "w" —write
 "3" —append

* There are more, but we will just use
these

Opening a file

 fopen(<filename>, <mode>)
* Returns a pointer to a FILE
structure

e Returns NULL if the file could not
be opened

#include <stdio.h>

int main() {
FILE xfp = fopen("input.txt", "r");

return 0;

Opening a file

 fopen(<filename>, <mode>)

#include <stdio.h> * Returns a pointer to a FILE
structure
int main() { i i
FILE #fp = fopen("input.txt", "r"); * Returns NULL if the file could not
be opened

if (fp == NULL) {
printf("Could not open input.txt\n");
return 1;

}

return 0;

Reading from a file

#include <stdio.h>

* Read and print each character in

int main() { the input file
FILE xfp = fopen("input.txt", "r");

* fgetc(FILE *file_pointer) - reads a

if (fp == NULL) {

printf("Could not open input.txt\n"); CharaCter frOm d flle
return 1;

}

Tne:

while ((c = fgetc(fp)) != EOF) {
putchar(c);
¥

return 0;

int main() { o e fclose(FILE *file_pointer) - closes
FILE xfp = fopen("input.txt", "r"); —

a file
if (fp == NULL) {
printf("Could not open input.txt\n");
return 1;

)

Inteec:

while ((c = fgetc(fp)) !'= EOF) {
putchar(c);

}

fclose(fp);

return 0;

Writing to a file

* If the file does not exist, fopen()
will create the file and write the

#include <stdio.h>

int main() {
FILE xfp_to_write = fopen("output.txt", "w"); Content

if (fp_to_write == NULL) {

printf("Error opening output.txt\n");
return 1;

}
fprintf(fp_to_write, "Hello file! How are you?\n");
fclose(fp_to_write);

return 0;

Writing to a file

#include <stdio.h> * If the file already exists, its

int main() { contents will be overwritten
FILE xfp_to_write = fopen("output.txt", "w");

if (fp_to_write == NULL) {
printf("Error opening output.txt\n");
return 1;

Is

fprintf(fp_to_write, "I hope you are well\n");

fclose(fp_to_write);

return 0;

Writing to a file

#include <stdio.h>

int main() {
FILE xfp_to_write = fopen("output.txt", "w");

if (fp_to_write == NULL) {
printf("Error opening output.txt\n");
return 1;
}
fprintf(fp_to_write, "Hello file! How are you?\n");

fclose(fp_to_write);

return 0;

* While a file is open in write
mode, subsequent calls to
fprintf() will keep writing
additional data to the file

* Both of these lines will be
written to the file.

Writing to a file

int main() {
FILE xfp_to_write = fopen("output.txt", "w");

if (fp_to_write == NULL) {
printf("Error opening output.txt\n");
return 1;

}

fprintf(fp_to_write, "Hello file! How are you?\n");

fprintf(fp_to_write, "I hope you are well\n");
fclose(fp_to_write);

return 0:

* While a file is open in write
mode, subsequent calls to
fprintf() will keep writing
additional data to the file

* Both of these lines will be
written to the file.

Appending to a file

* The contents of the file will not
be overwritten

#include <stdio.h>
int wain() { * Writing using this file pointer will
FILE xfp_to_append = fopen("output.txt", "a"); .
o append data to the file

if (fp_to_append == NULL) {
printf("Error opening append.txt\n");
Ee GnaIS

}
fprintf(fp_to_append, "Here is a line to append!\n");

fclose(fp_to_append);

Reading integers from a file

L o b e fscanf() and fprintf() work like
$0t main (] 1 scanf() and printf()

FILE xnumbers_fp = fopen("numbers.txt", "r"); ° aISO take a F”_E pOinter as the

if (numbers_fp == NULL) { i

’ gllimini;?"E?ror opening numbers.txt\n"); fIrSt argument

return 1;

}

int input;

while (fscanf(numbers_fp, "%i", &input) == 1) {

printf("%i\n", input);

}
fclose(numbers_fp);

return 0;

Assignment: File Integer Sum

* Your program will
* read integers from an input file
* write the sum of the integers to an output file

Assignment: File Integer Sum

* input.txt
1234567

o [file_integer sum input.txt output.txt

e output.txt
* 28

Exit Codes

* Incorrect number of arguments, exit code 1
* Error opening the input file, exit code 2
* Error opening the output file, exit code 3

Error messages

* Do not hardcode file names to print error messages
e Use the arguments received from command line.

