
Resizing Arrays

STACK allocated arrays cannot change size!

int main() {

// Fixed size array on the stack

int values[5] = {1, 2, 3, 4, 5};

for (size_t i = 0; i < 5; ++i)

printf(“%i\n”, values[i]);

return 0;

}

Only HEAP arrays can resize

int main() {

// Dynamic array on the heap

int *values = calloc(5, sizeof(int));

for (size_t i = 0; i < 5; ++i)

printf(“%i\n”, values[i]);

free(values);

return 0;

}

Refresher: Array Storage

• Arraysarestored in CONTIGUOUS areasof memory
• Startingat the beginningof the array,eachelement in the arraywill follow

the previous elementconsecutively inmemory

• This is requireddue to thewaywe accessarrayelements
• Thearrayvariable is a pointer to the firstelementof the array (offsetof 0)
• Subsequent elementsare found at the starting location+ an offset
• This is whathappens when we request array[n]where 0 <= n < the array size.
• array[3] is equivalent to *(array + 3)

We canacquiremore memory forour heap arrays in one of two ways
depending on ourmemory layout.

Resizing an Array

5 30 -11 6

array

Thereis adequate freespacenextto thecurrentarray

Resizing an Array: Condition #1

5 30 -11 6

array

Thereis adequate freespacenextto thecurrentarray

Resizing an Array: Condition #1

5 30 -11 6 2 1

Wecangrowour array in placeanduse thesparememory

array

Resizing an Array: Condition #2

Thereis NOTenough freespacenextto thecurrentarray

array array_two

5 30 -11 6 ’C’ ‘A’ ‘T’ ‘\0’

Thereis NOTenough freespacenextto thecurrentarray

Resizing an Array: Condition #2

array array_two

5 30 -11 6 ’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6

1) Copy theold arrayto a largermemory location

Thereis NOTenough freespacenextto thecurrentarray

Resizing an Array: Condition #2

array array_two

5 30 -11 6 ’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6

1) Copy theoldarrayto a largermemory location
2) Free the oldarray

Thereis NOTenough freespacenextto thecurrentarray

Resizing an Array: Condition #2

array array_two

5 30 -11 6 ’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6

1) Copy theold arrayto a largermemory location
2) Free the oldarray
3) Update thepointer

CS110: ImperativeProblemSolving

Thereis NOTenough freespacenextto thecurrentarray

Resizing an Array: Condition #2

array array_two

5 30 -11 6 ’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6 2 1

1) Copy theold arrayto a largermemory location
2) Free the oldarray
3) Update thepointer

CS110: ImperativeProblemSolving

13

The realloc Function

• Good news, the reallocfunctionwill takecareof this
• void *realloc(void *ptr, size_t size)

• Returns: a voidpointer
• Parameters:pointer to the original array,new size in bytes

• If there is consecutive freespacenext to thearrayrealloc…
• acquiresextraspace and returns the original pointer

• If there is insufficient spacerealloc…
• createsa new array,copies the old data to the new array,freesold memory,

and returns a pointer to the new array location

Writing a program that
dynamically resizes an array

Variables

• size
• number of elements that have

been placed into the array

• capacity
• total number of elements that the

array can currently hold

Dynamic array

• Allocating memory in the heap
with initial capacity

Reading from the standard input
• If scanf() is asked to read a single

integer, it will
• return 1 if it was able to read an

integer, i
• return 0 if there was more data from

standard input but it was not an
integer

• return EOF if standard input reaches
EOF

• By looping while scanf() returns 1
• it will read all the integers until there

is input that is
• not an integer
• EOF is reached.

Reading from the standard input

• Need to grow the array if the
number of elements in the array
is equal to the current capacity
• Doubling the capacity each time

the array grows helps avoid
calling realloc() many times if the
array gets large

Reading from the standard input

• Need to assign the return value
of realloc() back to the variable
array, because the address of the
array may have changed

Test run
input size

(beginning
of iteration)

capacity size
(end of
iteration)

1 0 1 1

2 1 2 2

3 2 4 3

4 3 4 4

5 4 8 5

6 5 8 6

7 6 8 7

8 7 8 8

9 8 16 9

Test run

• Input that is not an integer

Printing out the elements of the array

Printing the elements till ‘capacity’ is reached

Printing the elements till ‘capacity’ is reached

Freeing up heap allocated memory

Adjusting the array size once input is finished

NULL pointer

• malloc() and realloc() will return NULL if they were unable to allocate
memory.
• NULL is a special value used to indicate that a pointer points to

nothing.
• If you try to dereference a pointer that has the value NULL you will

get a segmentation fault.

NULL Pointer

