Resizing Arrays

STACK allocated arrays cannot change size!

int main() {

// Fixed size array on the stack

int values[5] = {1, 2, 3, 4, 5};

for (size t 1 = 0; 1 < 5; ++1)

printf (“%i\n”, values[i]);

return 0;

Only HEAP arrays can resize

int main() {
// Dynamic array on the heap

int *values = calloc (5, sizeof (int));

for (size t 1 = 0; 1 < 5; ++1)

printf (“%i\n”, values[i]);
free (values) ;

return 0;

Refresher: Array Storage

* Arrays are stored in CONTIGUOUS areas of memory

« Starting at the beginning of the array, each element in the array will follow
the previous elementconsecutively inmemory

* This is required due to the way we access array elements
« The array variable is a pointer to the first element of the array (offset of 0)
 Subsequent elements are found at the starting location + an offset
« This is what happens when we request array[n] where 0 <= n < the array size.
« array[3] is equivalent to *(array + 3)

Resizing an Array

We can acquire more memory for our heap arrays in one of two ways
depending on our memory layout.

array
D KKK

Resizing an Array: Condition #1

There is adequate free space next to the current array

array
6

Resizing an Array: Condition #1

There is adequate free space next to the current array

array
DR

We can grow our array in place and use the spare memory

Resizing an Array: Condition #2

Thereis NOT enough free space next to the current array

array array_two

DEENEEEE

Resizing an Array: Condition #2

Thereis NOT enough free space next to the current array

array array_two

HEEREERES
cfefefe] [

1) Copy the old array to a larger memory location

Resizing an Array: Condition #2

Thereis NOT enough free space next to the current array

array - array_two
(5 30 -11 6

1) Copy the old array to a larger memory location
2) Free the old array

Resizing an Array: Condition #2

Thereis NOT enough free space next to the current array

/array array two

5 30 -11 6

1) Copy the old array to a larger memory location
2) Free the oldarray
3) Update thepointer

CS110: Imperative Problem Solving

Resizing an Array: Condition #2

Thereis NOT enough free space next to the current array

/array array two

5 30 -11 6

1) Copy the old array to a larger memory location
2) Free the oldarray
3) Update thepointer

CS110: Imperative Problem Solving

The realloc Function

* Good news, the realloc function will take care of this
* void *realloc(void *ptr, size t size)
 Returns: a void pointer
 Parameters: pointer to the original array, new size in bytes

* |f there is consecutive free space next to the array realloc...
* acquires extraspace and returns the original pointer

* If there is insufficient spacerealloc...

* creates a new array, copies the old data to the new array, frees old memory,
and returns a pointer to the new array location

Writing a program that
dynamically resizes an array

Variables

#include <stdio.h> * size
#include <stdlib.h> * number of elements that have
been placed into the array
int main(){ * capacity
size t size = 0; * total number of elements that the

array can currently hold
size_t capacity = 1;

return 0;

Dynamic array

* Allocating memory in the heap

#include <stdio.h> Wlth Inltlal CapaCity
#include <stdlib.h>

int main(){
size_t size = 0;

size_t capacity = 1;
int xarray = malloc(capacity % sizeof(int));

return 0;

Reading from the standard input

Hinclude <stdio.h- * If scanf() is asked to read a single

rnetude =stdtib.he integer, it will

int main(){ e return 1 if it was able to read an
size_t size = 0; integer, |

* return O if there was more data from
standard input but it was not an

size_t capacity = 1;

int *array = malloc(capacity * sizeof(int)); Integer _ _
e return EOF if standard input reaches
int input; EOF
while(scanf("%i", &input) == 1){ . .
f(size o= capacity){ * By looping while scanf() returns 1
capacity *= 2; * it will read all the integers until there
array = realloc(array, capacity * sizeof(int)); is input that is
printf("Resized array to have capacity %zu\n", capacity); .
} °* not an integer
arrayl[size] = input; * EOF is reached.
size++;
}

return 0;

Reading from the standard input

#include <stdio.h>

include —<tdlib.ne * Need to grow the array if the

ot i number of elements in the array
size_t size = 0; is equal to the current capacity
sizet capacity = L * Doubling the capacity each time
int *array = malloc(capacity * sizeof(int)); the array grOWS helps aVO|d
int input; calling realloc() many times if the
while(scanf("%i", &input) == 1){

T = e array gets large

capacity x= 2;
array = realloc(array, capacity * sizeof(int));
printf("Resized array to have capacity %zu\n", capacity);

}
array[size] = input;
size++;

¥

return 0;

Reading from the standard input

#include <stdio.h>

R * Need to assign the return value
it main (0t of realloc() back to the variable
size_t size = 0; array, because the address of the
size t capacity = 1; array may have changed
int xarray = malloc(capacity * sizeof(int));
int input;
while(scanf("%i", &input) == 1){
if(size == capacity){

capacity *x= 2;
array = realloc(array, capacity * sizeof(int));
printf("Resized array to have capacity %zu\n", capacity);

¥
arrayl[sizel = input;
size++;

}

return 0;

Test run

size capacity | size
(beginning (end of
of iteration) iteration)
0 1

il

2

Array has been resized to hold 2 values.
3

Array has been resized to hold 4 values.
4

5}

Array has been resized to hold 8 values.
6

7

8

9

Array has been resized to hold 16 values.

1
2
4
4
8
8
8
8

O 00 N o Ul Ao W N B
0O N o o B W N
O 00 N o U A W N

16

Test run

* Input that is not an integer

(base) zwkbhowmiknb®2:Downloads kbhowmik$./realloc
1

2

Resized array to have capacity 2

3

Resized array to have capacity 4

4

5

Resized array to have capacity 8

6

i

8

9

Resized array to have capacity 16
h

Printing out the elements of the array

int input;

while(scanf("%si", &input) == 1){ (base) zwkbhowmiknb®2:Downloads kbhowmik$./realloc
if(size == capacity){ 1
capacity = 2; 2
array = realloc(array, capacity * sizeof(int)); Resized array to have capacity 2
printf("Resized array to have capacity %zu\n", capacity); 3
¥ , _ Resized array to have capacity 4
arrayl[sizel = input; 4
size++;
) 5

Resized array to have capacity 8

for(size_t i = 0; i < size; i++){ 1D
printf("si\n", arrayl[il); 2
} 3
4
return 0; 5

Printing the elements till ‘capacity’ is reached

while(scanf("%i", &input) == 1){

if(size == capacity){
capacity x= 2;
array = realloc(array, capacity * sizeof(int));
printf("Resized array to have capacity %zu\n", capacity);

¥

array[size]l = input;

size++;

}

for(size_t i = 0; i < capacity; i++){
printf("si\n", arrayl[il);

}

return 0;

Printing the elements till ‘capacity’ is reached

1

2

Resized array to have capacity 2
3

Resized array to have capacity 4
4

5

Resized array to have capacity 8
hello

oo uUphL,WNER

Freeing up heap allocated memory

for(size_ t i = @; i < capacity; i++){
printf("%si\n", arrayl[il);

F
free(array);

return 0;

Adjusting the array size once input is finished

array = realloc(array, size % sizeof(int));

for(size t i = 0; i < size; i++){
printf("%si\n", arrayl[il);

}

free(array);

return 0;

NULL pointer

* malloc() and realloc() will return NULL if they were unable to allocate
memory.

* NULL is a special value used to indicate that a pointer points to
nothing.

* If you try to dereference a pointer that has the value NULL you will
get a segmentation fault.

NULL Pointer

int main(){ int input;
. _ while(scanf("%i", &input) == 1){
size_t size = 0; if(size == capacity){
capacity = 2;

. . array = realloc(array, capacity x sizeof(int));
size_t capacity = 1;

if (array == NULL){

) } . . printf("Unable to realloc to a new capacity of %zu.\n", capacity);
int xarray = malloc(capacity * sizeof(int));

return 1;
}

. printf("Resized array to have capacity %zu\n", capacity);
if(array == NULL){ }

printf("Unable to allocate memory.\n"); array[size] = input;

size++;

return 1; y

¥

