Dynamic Memory Allocation

Review

* How do we pass arrays across functions?

Review

* What is the scope for variables declared inside a function?

Review

* What happens to the automatic variables associated with a function
after the stack frame for that function gets popped off the call stack?

Review

* From examples discussed in last class, which was the first function to
be pushed on to the call stack and the last to be popped off it?

Powers of 2: Declaring the array in main()

#include <stdio.h>
#include <stdlib.h>

void powers_of_2(size_t count, unsigned int xpowers);
int main(int argc, char sxxargv) {

if (argc '= 2) {
printf("Usage: %s <number of powers>\n", argv([0]);

void powers_of_2(size_t count, unsigned int xpowers) {
unsigned int power = 1;

return 1; for (size_t i = 0; i < count; i++) {
} powers[i] = power;
power x= 2;
size_t power_count = atoi(argv[1]); }
unsigned int powers[power_count]; }

powers_of_2(power_count, powers);
for (size_t i = 0; i < power_count; i++) {
printf("su\n", powers[il);

}

return 0;

Puthontutor Visualization

#include <stdio.h>
#include <stdlib.h>

void powers_of_2(size_t count, unsigned int *powers);

int mainQ) {
unsigned int powers[5] = {0};
powers_of_2(5, powers);
for (size_t 1 =0; i < 5; i++) {

printf("%u\n", powers[i]);
}

return 0;

}

void powers_of_2(size_t count, unsigned int *powers) {

unsigned int power = 1;

for (size_t 1 = 0; i < count; i++) {
powers[i] = power;
power *= 2;

Stack
main
array
0 1 2 3 4
unsigned | unsigned | unsigned | unsigned | unsigned
powers int int int int int

* |2 4 8 16

powers_of_2

size_t
5

pointer

powers
unsigned int
power 16
. |size_t
!

Heap

Hypothetical situation: Returning an array from a function

#include <stdio.h>
#include <stdlib.h>

unsigned int xpowers_of_2(size_t count);

int main(int argc, char #*argv) { unsigned int *powers_of_2(size_t count) |{
if (argc !'= 2) {
printf("Usage: %s <number of powers>\n", argv([0]);
return 1;

unsigned int powers[count];

}
unsigned int power = 1;

for (size_t i = 0; i < count; i++) {
unsigned int xpowers = powers_of_2(power_count); powers [1] = power;

size_t power_count = atoi(argv[1]);

Xx= .
for (size_t i = @; i < power_count; i++) { power 2;

printf("su\n", powers[i]); }

return powers;

}

return 0; }

Warning!

char_count.c:32:12: warning: address of stack memory associated with
local variable 'powers' returned [-Wreturn-stack-address]
return powers;

NN

Dynamic Memory Allocation

#include <stdio.h>
#include <stdlib.h>

unsigned int xpowers_of_2(size_t count);

int main(int argc, char sxxargv) {

if (argc !'= 2) { unsigned int xpowers of 2(size t count) {
printf("Usage: %s <number of powers>\n", argv[0]); unsigned int xpowers = malloc(count x sizeof(unsigned int));
return 1;
e unsigned int power = 1;
for (size_t i = 0; i < count; i++) {

size_t power_count = atoi(argv([1]);

powers [i]
power *= 2;

power;

unsigned int *powers = powers_of_2(power_count); }

for (size_t i = 0; i < power_count; i++) {

: . return powers;
printf("su\n", powers[i]);

}

free(powers);

return 0;

Dynamic Memory Allocation

&
Stack Heap
unsigned int *powers_of_2(size_t count) { .
. . " _ % o4 . main array
unsigned int *powers = malloc(count sizeof (unsigne 0 1 2 3 4
pointer unsigned int | unsigned int | unsigned int | unsigned int | unsigned int
) . powers > < - = 4 ?
—) unsigned int power = 1; . . ¢ . /
for (size_t i = 0; i < count; i++) {
powers[i] = power; powers_of_2

power *= 2; size_t
} count g

poin{ér

powers
return powers;

} unsigned int
power -

malloc()

* malloc() dynamically allocates
memory on the heap

* returns a pointer to that
memory.

main

powers

powers_of_2

Stack

pointer

size_t

malloc()

* The parameter for malloc() is the
number of bytes we want to
allocate

unsigned int xpowers of 2(size t count) {

unsigned int *powers = malloc(count * sizeof(unsigned int)); ® TO allocate an array we need tO

P L Y s) < multiply the number of elements
povers 11 pover we want by the number of bytes
: each element needs.

return powers;

}

malloc()

 return type: void *

* Generic pointer that is
unsigned int xpowers of 2(size t count) { aUtomatically CaSt to a pOinter Of
unsigned int xpowers = malloc(count * sizeof(unsigned int)); 3 Specific type on assignment

unsigned int power = 1;

s (S5 0 = a5 * sizeof() finds the size of the type
powers[i] = power; .
} power *= 2; YOUu are using

return powers: * malloc(10 * sizeof(int)) - Allocates
} ' enough storage for 10 ints

Visualizing malloc()

int main() {
unsigned int *powers = powers_of 2(5);

= for (size t i = 0; i < 5; i++) { Stack Heap
printf("%u\n", powers[i]); main array
} 0 1 2 3 4
owers pointer unsigned int | unsigned int | unsigned int | unsigned int | unsigned int
P 1 2 4 8 16
o size_t
free(powers); i
return 0;

Heap

* Area where dynamically
allocated memory is stored

* Memory in the heap is not
associated with names, like stack
variables are

* Memory in the heap can only be
accessed through pointers

Stack

main

>
pointer unsigned int | unsigned in unsigned in unsigned in
powers 1

size_t

Heap

array
0

free()

int main() {
unsigned int *powers = powers of 2(5);

for (size_t i = 0; i < 5; i++) { Stack Heap
printf("%u\n", powers[i]);
} main array
pointer
free(powers); powers &
— return 0;

free()

#include <stdio.h>
#include <stdlib.h>

unsigned int xpowers_of_2(size_t count);

int main(int argc, char sxxargv) {

if (argc !'= 2) { unsigned int xpowers_of_2(size_t count) {
printf("Usage: %s <number of powers>\n", argv[0]); unsigned int xpowers = malloc(count x sizeof(unsigned int));
return 1;
¥ unsigned int power = 1;
for (size_t i = 0; i < count; i++) {
size_t power_count = atoi(argv[1]); powers[i] = power;

power x= 2;
unsigned int *powers = powers_of_2(power_count); }

for (size_t i = 0; i < power_count; i++) {

i] return powers;
printf("su\n", powers[i]);

free(powers);

return 0;

Memory leak

* If ptr is a pointer to heap memory, reassigning ptr to point to
something else will not free the memory automatically.

* If ptr is automatically deallocated when a function returns, the heap
memory will also not be deallocated

* Heap memory that has no pointer pointing to it is inaccessible and
cannot be freed until the program exits

calloc()

e calloc()
 void *calloc(size_t count, size_t size)
* Allocates enough memory to store count items of size bytes each
* Memory is initialized to 0

* int *array = calloc(10, sizeof(int))
* Create an array of 10 ints, initialized to O

