
Call Stack and Scope



Scope

• The name that identifies a variable has certain visibility throughout 
the program
• Three fundamental levels of scope
• Global
• Local
• Block



Global Scope

• Also known as file scope
• Variables declared outside of the functions have global scope
• These variables and their identifiers are accessible in all the functions
• The functions can both read and modify the value of a global variable 

unless they are declared as constants
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Possible Advantages of Global Variables

• Can be used instead of macros in cases when values need to be of 
specific type
• No type checking is done in macros
• macro expansion is done in preprocessing stage
• Not checked for compilation error
• Use of macros can lead to errors



Pitfalls

• Global variables are modifiable unless they are const
• If values are not supposed to change, use of global variables may lead

to incorrect results
• The identifiers also have global scope
• We lose out on a few variable names



Local Scope

• Variables declared within 
functions have scope local to 
that function

• Variables array_size and array 
have local scope within the 
main() function



Local Scope

• time_array provides access to 
the data in variable array in 
main by reference

• the variable named array is 
NOT visible to this function.



Block Scope

• The varible i has block scope 
within this for loop

• It is also accessible to any 
nested loops, conditions, or 
blocks within this for loop.



Block Scope

• Variable i was declared 
outside of the while loop
• still visible after the while loop 

and it maintains its value. 



• You can create your own blocks 
without a conditional or looping 
structure.
• Any variables declared within 

curly braces have their scope
• limited to code within the same 

(or a nested) block



• Can be used for testing
• You can copy and paste the block, 

change the values you are testing
• variable names can be the same 

since the scope is limited to the 
block where they are declared.
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What is a Stack?

• Astack is a typeof datastructure

• Thinkof it likea stackofpapers  
or dishes

• We can:
• add items to the top witha PUSH
• remove items fromthe topwitha
POP



The Call Stack

• Often justcalled“thestack”.

• Everyrunning programhas its own stack

• Eachtimea function is calleda stackframeis pushed onto the stack
• Thefunctionat the top of the stackis the activefunction

• Astack frame consistsof:
• Returnaddress (where in the code the functionwas called)
• Automatic variables used bythefunction



Automatic Variables

• All thevariableswe havebeenusing so farhavebeenautomatic  
variables.

• When a function is called,memory (RAM) is allocatedfor local  
variables and functionparameters.

• Thememory is automaticallyreleasedwhen the function returns (or  
reaches theend in thecaseof a void function).



How does this work?
int sum(int a, int b) {  

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);  
return 0;

}
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How does this work?
int sum(int a, int b) {  

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}
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stack.
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How does this work?
int sum(int a, int b) {  

return a + b;
}

int main() {
int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}

When printf is  
complete, we can  
remove thefunction  
from the stack and  
resume themain.
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How does this work?
int sum(int a, int b) {  

return a + b;
}

int main() {
int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}

When mainreturns
it is also removedfrom  
the the stackandthe
programquits.

TheStack



You can try this out for yourself!

• Python tutor canvisualizethe running of a single fileC programand  
show thecallstack

• http://pythontutor.com/c.html#mode=edit

http://pythontutor.com/c.html

