
Call Stack and Scope

Scope

• The name that identifies a variable has certain visibility throughout
the program
• Three fundamental levels of scope
• Global
• Local
• Block

Global Scope

• Also known as file scope
• Variables declared outside of the functions have global scope
• These variables and their identifiers are accessible in all the functions
• The functions can both read and modify the value of a global variable

unless they are declared as constants

Global Scope

Global Scope

Possible Advantages of Global Variables

• Can be used instead of macros in cases when values need to be of
specific type
• No type checking is done in macros
• macro expansion is done in preprocessing stage
• Not checked for compilation error
• Use of macros can lead to errors

Pitfalls

• Global variables are modifiable unless they are const
• If values are not supposed to change, use of global variables may lead

to incorrect results
• The identifiers also have global scope
• We lose out on a few variable names

Local Scope

• Variables declared within
functions have scope local to
that function

• Variables array_size and array
have local scope within the
main() function

Local Scope

• time_array provides access to
the data in variable array in
main by reference

• the variable named array is
NOT visible to this function.

Block Scope

• The varible i has block scope
within this for loop

• It is also accessible to any
nested loops, conditions, or
blocks within this for loop.

Block Scope

• Variable i was declared
outside of the while loop
• still visible after the while loop

and it maintains its value.

• You can create your own blocks
without a conditional or looping
structure.
• Any variables declared within

curly braces have their scope
• limited to code within the same

(or a nested) block

• Can be used for testing
• You can copy and paste the block,

change the values you are testing
• variable names can be the same

since the scope is limited to the
block where they are declared.

Programs in Memory
Command LineArguments
and EnvironmentVariables

Stack

Heap

InitializedData

UninitializedData

ProgramText

Programs in Memory
Command LineArguments
and EnvironmentVariables

Stack

Heap

InitializedData

UninitializedData

ProgramText

Thisareaof memory getsused each timeyou
calla function or request dynamic memory.

Programs in Memory
Command LineArguments
and EnvironmentVariables

Stack

Heap

InitializedData

UninitializedData

ProgramText

Thisareaof memory getsused each timeyou
calla function or request dynamic memory.

What is a Stack?

• Astack is a typeof datastructure

• Thinkof it likea stackofpapers
or dishes

• We can:
• add items to the top witha PUSH
• remove items fromthe topwitha
POP

The Call Stack

• Often justcalled“thestack”.

• Everyrunning programhas its own stack

• Eachtimea function is calleda stackframeis pushed onto the stack
• Thefunctionat the top of the stackis the activefunction

• Astack frame consistsof:
• Returnaddress (where in the code the functionwas called)
• Automatic variables used bythefunction

Automatic Variables

• All thevariableswe havebeenusing so farhavebeenautomatic
variables.

• When a function is called,memory (RAM) is allocatedfor local
variables and functionparameters.

• Thememory is automaticallyreleasedwhen the function returns (or
reaches theend in thecaseof a void function).

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}

TheStack

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}
main()

value =?

The mainfunction
is pushed tothestack
with its variables
when theprogram
starts.

TheStack

ActiveFunction

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}
main()

value =?

Once we reach the
callto sum,weneed
to push that to the
stack.

TheStack

ActiveFunction

sum()

a =1 b =2

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}
main()

value =?

When wereturnfrom
sum we popsum
off the stackandgo
back to the main
function.

TheStack

ActiveFunction

sum()

a =1 b =2

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {

int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}

Printf is alsoafunction
so that willhaveto
be pushed onthe
stack.

TheStack

main()

value =3

ActiveFunction

printf()

“%i\n” 3

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {
int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}

When printf is
complete, we can
remove thefunction
from the stack and
resume themain.

TheStack

main()

value =3

ActiveFunction

How does this work?
int sum(int a, int b) {

return a + b;
}

int main() {
int value = sum(1, 2);

printf(“%i\n”, value);
return 0;

}

When mainreturns
it is also removedfrom
the the stackandthe
programquits.

TheStack

You can try this out for yourself!

• Python tutor canvisualizethe running of a single fileC programand
show thecallstack

• http://pythontutor.com/c.html#mode=edit

http://pythontutor.com/c.html

