Call Stack and Scope

Scope

* The name that identifies a variable has certain visibility throughout
the program

* Three fundamental levels of scope
* Global

e Local
e Block

Global Scope

e Also known as file scope
* Variables declared outside of the functions have global scope
* These variables and their identifiers are accessible in all the functions

* The functions can both read and modify the value of a global variable
unless they are declared as constants

Global Scope

#include <stdio.h>
#include <assert.h>

double acceleration = 9.8; // m/s”2

int start_time = 20; // seconds

double free_fall_velocity(int time);

void display_velocities(const int xtime_array, int size);

void test_velocity_function();

int main() {

int main() {

size_t array_size = 5;
int arraylarray_size];

for (int i = @; i < array_size; ++i) {
array[i] = 0;

¥

int 1 = 0;

while (i < array_size) {
array[i] = start_time;
start_time = start_time + (4 x i);
++1i;

printf("The value of \"i\" is %i\n", i);

printf("The value of \"start_time\" is %i\n", start_time);

display_velocities(array, array_size);
printf("Running Tests!\n");
test_velocity_function();

return 0;

Global Scope

#include <stdio.h>
#include <assert.h>

double free_fall_velocity(int time) {

double acceleration =

int start_time = 20; // sec
return acceleration x time;

double free_fall_velocity(int time); by
void display_velocities(const int xtime_array, int size);
void test_velocity_ function();

int main() {

Possible Advantages of Global Variables

e Can be used instead of macros in cases when values need to be of
specific type
* No type checking is done in macros
* macro expansion is done in preprocessing stage
* Not checked for compilation error
* Use of macros can lead to errors

Pittalls

* Global variables are modifiable unless they are const

* If values are not supposed to change, use of global variables may lead
to incorrect results

* The identifiers also have global scope
e We lose out on a few variable names

Local Scope

* Variables declared within
functions have scope local to
that function

* Variables array_size and array
have local scope within the
main() function

int main() {

size_t array_size = 5;
int arraylarray_sizel;

for (int i = 0; i < array_size; ++i) {
array[i] = 0;

}
int i = 0;

while (i < array_size) {
array[i] = start_time;
start_time = start_time + (4 % 1i);
++1;

}

printf("The value of \"i\" is %i\n", i);

printf("The value of \"start_time\" is %i\n", start_time);
display_velocities(array, array_size);
printf("Running Tests!\n");
test_velocity function();

return 0;

Local Scope

. i .
tlme—arr?y prqwdes acce§s to void display_velocities(const int xtime_array, int size) {
the data in variable array in

main by reference for (int i = 0; i < size; ++i) {

. . printf("The free fall speed after %i seconds is: %1f m/s”~2\n",
* the variable named array is ~ time_arrayl[il, free_fall_velocity(time_array[il));
NOT visible to this function.

Block Scope

* The varible i has block scope
within this for loop

* Itis also accessible to any
nested loops, conditions, or
blocks within this for loop.

int main() {

size_t array_size = 5;
int arraylarray_sizel;

for (int i = 0; i < array_size; ++i) {
array[i] = 0;

int 1 = 0;

while (i < array_size) {
array[i] = start_time;
start_time = start_time + (4 x 1i);
++1;

printf("The value of \"i\" is %i\n", i);

printf("The value of \"start_time\" is %i\n", start_time);
display_velocities(array, array_size);

printf("Running Tests!\n");

test_velocity_function();

return 9;

int main() {

size_t array_size = 5;
BlOCk SCO pe int arraylarray_size];

for (int i = 0; i < array_size; ++i) {

- arraylil = o;

}

* Variable i was declared
outside of the while loop int 1 = 0;

 still visible after the while loop
and it maintains its value.

while (i < array_size) {

array[i] = start_time;
start_time = start_time + (4 * 1i);
++1;

printf("The value of \"i\" is %i\n", i);
printf("The value of \"start_time\" is %i\n", start_time);
display_velocities(array, array_size);

printf("Running Tests!\n");

test_velocity_function();

return 0;

[You can Create your own blOCkS void test_velocity_function() {

without a conditional or looping {
int input_test = 5;
StrUCtU re. doublepexpected = 49;
assert(free_fall_velocity(input_test) == expected);
* Any variables declared within '
1 {
curly braces have their scope e

- L doubl ted = 19.6;
* limited to code within the same o T) = e
(or a nested) block }
{
int input_test = 9;
double expected = 88.2;
assert(free_fall_velocity(input_test) == expected);
}

[Can be used for teStlng void test_velocity_function() {

* You can copy and paste the block, {
. int input_test = 5;
change the values you are testing double expected = 49;
. assert(free_fall_velocity(input_test) == expected);
 variable names can be the same }

since the scope is limited to the
block where they are declared.

int input_test = 2;
double expected = 19.6;

y(input_test) == expected);

}
{
int input_test = 9;
double expected = 88.2;
assert(free_fall_velocity(input_test) == expected);
}

Programs in Memory

Command LineArguments
and EnvironmentVariables

Stack

Heap
Initialized Data
Uninitialized Data

Program Text

Programs in Memory

Command LineArguments
and EnvironmentVariables

Stack

This area of memory gets used each time you
calla function or request dynamic memory.

Heap

Initialized Data
Uninitialized Data

Program Text

Programs in Memory

Command LineArguments
and EnvironmentVariables

Stack

This area of memory gets used each time you
calla function or request dynamic memory.

Heap

Initialized Data
Uninitialized Data

Program Text

What is a Stack?

* Astackis a type of data structure

 Think of it like a stack ofpapers
or dishes

 We can:

 add items to the top with a PUSH

« remove items from the top with a
POP

‘M
N g—
T — e —

The Call Stack
« Often just called “thestack”.

 Every running program has its own stack

 Each time a function is called a stack frame is pushed onto the stack
 The function at the top of the stack s the active function

» Astack frame consistsof:

 Return address (where in the code the function was called)
 Automatic variables used by thefunction

Automatic Variables

* All the variables we have been using so far have been automatic
variables.

* When a function is called, memory (RAM) is allocated for local
variables and function parameters.

* The memory is automatically released when the function returns (or
reaches the end in the case of a void function).

How does this work? TheStack

int sum(int a, int b) {

return a + b;

int main () {
int value = sum(1l, 2);

printf (“%i\n”, value);
return 0O;

How does this work?

TheStack
int sum(int a, 1int b) {
return a + b;
}
int main() {
The mainfunction int value = sum(1l, 2);
ls.pus.hed tgthestack printf (“%i\n”, value);
with its variables .
return 0;
when theprogram Active Function
starts.
main ()
value =7

How does this work?

Once we reach the
callto sum, weneed
to push that to the
stack.

int sum(int a, int b) {

return a + b;

int main () {
int value = sum(1l, 2);

printf (“%i\n”, wvalue);
return O;

Active Function

TheStack

main ()

value =7

How does this work?

TheStack

int sum(int a, 1int b) {

Active Function
int main() {

When we returnfrom int value = sum(l, 2);
sum we pop sum ntE(Y2i\n” 1)
off the stack andgo printf (“siin”, value);

) return 0;
back to the main
function. }

main ()

value =7

How does this work?

int sum(int a, 1int b) {

return a + b;

int main() {

Printf is alsoafunction int value = sum(1l, 2);
so that willhaveto
be pushed onthe
stack.

TheStack

Active Function

printf ()

‘IIIH%HHIIIIIIII!IIIII

main ()

value =3

How does this work?

int sum(int a, 1int b) {

return a + b;

int main() {
When printf is int value = sum(l, 2);
complete, we cap printf (“%i\n”, value);
rom the sack and
from the stack and

resume themain. }

Active Function

TheStack

main ()

value =3

How does this work?

int sum(int a, int b) {

return a + b;

int main() {

When mainreturns int value = sum(l, 2);
itis also removedfrom printf (“%i\n”, value);

the the stack andthe -
-
program quits.
}

TheStack

You can try this out for yourself!

* Python tutor can visualize the running of a single file C program and
show the callstack

o http://pythontutor.com/c.html#mode=edit

http://pythontutor.com/c.html

