Call Stack and Scope



Scope

* The name that identifies a variable has certain visibility throughout
the program

* Three fundamental levels of scope
* Global

e Local
e Block



Global Scope

e Also known as file scope
* Variables declared outside of the functions have global scope
* These variables and their identifiers are accessible in all the functions

* The functions can both read and modify the value of a global variable
unless they are declared as constants



Global Scope

#include <stdio.h>
#include <assert.h>

double acceleration = 9.8; // m/s”2

int start_time = 20; // seconds

double free_fall_velocity(int time);

void display_velocities(const int xtime_array, int size);

void test_velocity_function();

int main() {

int main() {

size_t array_size = 5;
int arraylarray_size];

for (int i = @; i < array_size; ++i) {
array[i] = 0;

¥

int 1 = 0;

while (i < array_size) {
array[i] = start_time;
start_time = start_time + (4 x i);
++1i;

printf("The value of \"i\" is %i\n", i);

printf("The value of \"start_time\" is %i\n", start_time);

display_velocities(array, array_size);
printf("Running Tests!\n");
test_velocity_function();

return 0;



Global Scope

#include <stdio.h>
#include <assert.h>

double free_fall_velocity(int time) {

double acceleration =

int start_time = 20; // sec
return acceleration x time;

double free_fall_velocity(int time); by
void display_velocities(const int xtime_array, int size);
void test_velocity_ function();

int main() {



Possible Advantages of Global Variables

e Can be used instead of macros in cases when values need to be of
specific type
* No type checking is done in macros
* macro expansion is done in preprocessing stage
* Not checked for compilation error
* Use of macros can lead to errors



Pittalls

* Global variables are modifiable unless they are const

* If values are not supposed to change, use of global variables may lead
to incorrect results

* The identifiers also have global scope
e We lose out on a few variable names



Local Scope

* Variables declared within
functions have scope local to
that function

* Variables array_size and array
have local scope within the
main() function

int main() {

size_t array_size = 5;
int arraylarray_sizel;

for (int i = 0; i < array_size; ++i) {
array[i] = 0;

}
int i = 0;

while (i < array_size) {
array[i] = start_time;
start_time = start_time + (4 % 1i);
++1;

}

printf("The value of \"i\" is %i\n", i);

printf("The value of \"start_time\" is %i\n", start_time);
display_velocities(array, array_size);
printf("Running Tests!\n");
test_velocity function();

return 0;




Local Scope

. i .
tlme—arr?y prqwdes acce§s to void display_velocities(const int xtime_array, int size) {
the data in variable array in

main by reference for (int i = 0; i < size; ++i) {

. . printf("The free fall speed after %i seconds is: %1f m/s”~2\n",
* the variable named array is ~ time_arrayl[il, free_fall_velocity(time_array[il));
NOT visible to this function.




Block Scope

* The varible i has block scope
within this for loop

* Itis also accessible to any
nested loops, conditions, or
blocks within this for loop.

int main() {

size_t array_size = 5;
int arraylarray_sizel;

for (int i = 0; i < array_size; ++i) {
array[i] = 0;

int 1 = 0;

while (i < array_size) {
array[i] = start_time;
start_time = start_time + (4 x 1i);
++1;

printf("The value of \"i\" is %i\n", i);

printf("The value of \"start_time\" is %i\n", start_time);
display_velocities(array, array_size);

printf("Running Tests!\n");

test_velocity_function();

return 9;




int main() {

size_t array_size = 5;
BlOCk SCO pe int arraylarray_size];

for (int i = 0; i < array_size; ++i) {

- arraylil = o;

}

* Variable i was declared
outside of the while loop int 1 = 0;

 still visible after the while loop
and it maintains its value.

while (i < array_size) {

array[i] = start_time;
start_time = start_time + (4 * 1i);
++1;

printf("The value of \"i\" is %i\n", i);
printf("The value of \"start_time\" is %i\n", start_time);
display_velocities(array, array_size);

printf("Running Tests!\n");

test_velocity_function();

return 0;




[ You can Create your own blOCkS void test_velocity_function() {

without a conditional or looping {
int input_test = 5;
StrUCtU re. doublepexpected = 49;
assert(free_fall_velocity(input_test) == expected);
* Any variables declared within '
1 {
curly braces have their scope e

- L doubl ted = 19.6;
* limited to code within the same o T ) = e
(or a nested) block }
{
int input_test = 9;
double expected = 88.2;
assert(free_fall_velocity(input_test) == expected);
}



[ Can be used for teStlng void test_velocity_function() {

* You can copy and paste the block, {
. int input_test = 5;
change the values you are testing double expected = 49;
. assert(free_fall_velocity(input_test) == expected);
 variable names can be the same }

since the scope is limited to the
block where they are declared.

int input_test = 2;
double expected = 19.6;

y(input_test) == expected);

}
{
int input_test = 9;
double expected = 88.2;
assert(free_fall_velocity(input_test) == expected);
}
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What is a Stack?

* Astackis a type of data structure

 Think of it like a stack ofpapers
or dishes

 We can:

 add items to the top with a PUSH

« remove items from the top with a
POP
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The Call Stack
« Often just called “thestack”.

 Every running program has its own stack

 Each time a function is called a stack frame is pushed onto the stack
 The function at the top of the stack s the active function

» Astack frame consistsof:

 Return address (where in the code the function was called)
 Automatic variables used by thefunction



Automatic Variables

* All the variables we have been using so far have been automatic
variables.

* When a function is called, memory (RAM) is allocated for local
variables and function parameters.

* The memory is automatically released when the function returns (or
reaches the end in the case of a void function).



How does this work? TheStack

int sum(int a, int b) {

return a + b;

int main () {
int value = sum(1l, 2);

printf (“%i\n”, value);
return 0O;




How does this work?

TheStack
int sum(int a, 1int b) {
return a + b;
}
int main() {
The mainfunction int value = sum(1l, 2);
ls.pus.hed tgthestack printf (“%i\n”, value);
with its variables .
return 0;
when theprogram Active Function
starts.
main ()
value =7




How does this work?

Once we reach the
callto sum, weneed
to push that to the
stack.

int sum(int a, int b) {

return a + b;

int main () {
int value = sum(1l, 2);

printf (“%i\n”, wvalue);
return O;
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How does this work?

TheStack

int sum(int a, 1int b) {

Active Function
int main() {

When we returnfrom int value = sum(l, 2);
sum we pop sum ntE(Y2i\n” 1 )
off the stack andgo printf (“siin”, value);

) return 0;
back to the main
function. }

main ()

value =7




How does this work?

int sum(int a, 1int b) {

return a + b;

int main() {

Printf is alsoafunction int value = sum(1l, 2);
so that willhaveto
be pushed onthe
stack.

TheStack

Active Function

printf ()
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How does this work?

int sum(int a, 1int b) {

return a + b;

int main() {
When printf is int value = sum(l, 2);
complete, we cap printf (“%i\n”, value);
rom the sack and
from the stack and

resume themain. }

Active Function

TheStack

main ()

value =3




How does this work?

int sum(int a, int b) {

return a + b;

int main() {

When mainreturns int value = sum(l, 2);
itis also removedfrom printf (“%i\n”, value);

the the stack andthe -
-
program quits.
}

TheStack



You can try this out for yourself!

* Python tutor can visualize the running of a single file C program and
show the callstack

o http://pythontutor.com/c.html#mode=edit



http://pythontutor.com/c.html

