Random Numbers

Random Numbers: Applications

l---.[

CS110: Imperative Problem Solving 2

Random Numbers: Applications

* Useful in creating realistic graphics
* Cannot trace light scattering in
every direction
e Better to think of a few
random directions instead
* |n games that involves hitting a
target, the damage caused by
impact is a random number in a
specified range
* Games with opponent monsters
controlled by the software are a
lot more fun when the monster’s
actions vary unpredictably

Random Numbers: Applications
RSAEncryptionKeys

447701 X 65,637 =

2,929,669,437

e Random numbers are essential
for computer security.

* Every time a web connection
is secured, a random number
is exchanged between
computers to create a

|

)

4

+-(Public key

Private key Q=

Public

> 3 (171241619 |11[14| 7 [11|{15]| —;

Private

encrypts

decrypts

temporary encryption key. H

21

CS5110: Imperative Problem Solving

Il

2114|2119 [16] [23/18|6

1110

Truly Random Numbers

 Difficult forcomputers to generate true random numbers
* Programsare made up of algorithms which have deterministic behavior

All that a computer processor can do is based on the instructions
that it’s given

Computers perform math based on the numbers stored in its
memory and takes decisions based on the results of those
operations.

Strictly following instructions cannot produce truly random numbers
Such process can only produce pseudo random number

A Naive Psuedo-Random Algorithm

value = seed
add =11
repeat forever:
value =value +add

value = value % 10
add = add+1

A Naive Psuedo-Random Algorithm

value = seed Seed=4
add = 11 Volue —Jadd
repeatforever: 4 11
5 12
value =value +add . =
value = value % 10 0 14
add = add+1 4 15
9 16
5 17
2 18

CS110: Imperative ProblemSolving

A Naive Psuedo-Random Algorithm

value = seed Seed =4 Seed =5
add = 11 Value [add
repeatforever: 4 11 3 11
| | 4d 5 12 6 12
value =value +a . = = =
value = value % 10 0 14 1 14
add = add+1 4 = 2 =
9 16 0 16
5 17 6 17
2 18 3 18

CS5110: Imperative Problem Solving

A Naive Psuedo-Random Algorithm

value = seed Seed =4 Seed =5
add = 11 Value [add
repeatforever: 4 11 3 11
| | 4d 5 12 6 12
value =value +a . = = =
value = value % 10 0 14 1 14
add = add+1 4 = 2 =
9 16 0 16
5 17 6 17
2 18 3 18

Onlygeneratesnumbers between0Oand9
and repeats after 20values!

CS5110: Imperative Problem Solving

Pseudo-Random Numbers

* Generatedviaanalgorithm

* Provided a seed valueto startthe generation

* Only “secure”ifyou don’tknow the algorithm or the seed

* Also true for very complex algorithms
* “Security” through obscurity

 Easyto generatethemaquickly

Pseudo-Random Numbers

* Getting different initial seeds
* Using current time as initial seed
* Predictable if someone knows the details of mechanism
 Some processors have special circuits that generate truly
random numbers

Generating Truly Random Numbers

* Requires entropy from the realworld
* Entropy hereisameasure of how unpredictable theinformationis
* More entropy morerandom

* We can getentropyfrom:
 User Interaction (mousemovements)
e AtmosphericNoise
 Radioactive Decay

When to Use

Pseudo-Random Numbers:

e Low StakesGames

* Simulations that require
efficiency

Truly Random Numbers:
* Generating encryptionkeys

* High stakesgames

* Money or tangible rewards
involved

e Simulations that need true
randomness

rand() & srand()

* The C standard library provides a function rand()
» Before calling rand() we should call srand() and pass it a seed value
* Each different seed value will result in a different pseudo-random
seguence
e srand(time(NULL)) will seed the generator with the current time

* rand() returns a number between 0 and RAND_MAX

* We can get random numbers within a smaller range using modular
arithmetic

* We can get random numbers between 0 and 1 with
* rand() / (double)RAND_MAX

[] []
#include <stdio.h>
#include <stdlib.h>

#include <time.h>

int roll_die();

int main() {
printf("rand() will return a number between @ and %i\n", RAND_MAX);

° roII_die() int seed = time(NULL);

e Return do-random srand(seed);
eturns a pseuao-randao printf("The generator is seeded with the value %i\n", seed);
number between 1 and 6.

printf("The first 10 numbers in the sequence:\n");
for (size_t i = 0; i < 10; i++) {
printf("%i\n", rand());

Iy

printf("Simulating rolling a die 10 times:\n");
for (size_t 1 = 0; i < 10; i++) {
printf("%si ", roll_die());
}
printf("\n");

return 0;

CS110: Imperative Problem Solving 15

Rolling a
die

e Call srand() before calling int roll die() {
| return rand() % 6 + 1;

this function.

}

]
#include <stdio.h>
#include <stdlib.h>

#include <time.h>

]
d] e int roll_die();

int main() {
printf("rand() will return a number between @ and %i\n", RAND_MAX);

Seeds the pseudo-random number R T
generator used by rand() with the srand(seed) ;
value seed. printf("The generator is seeded with the value %i\n", seed);
. intf("The first 10 b in th :\n");

If rand() is used before any call sl Sadioiiat deit il it
to srand(), rand() behaves as if it printf("%i\n", rand());
was seeded with srand(1) }

. . . printf("Simulating rolling a die 10 times:\n");
Each time rand() is seeded with s
the same seed, it must produce printf("%i ", roll_die());
the same sequence of values. }

printf("\n");
time(NULL) gives the time as the
. return 0;

number of seconds since January 1,)
1970

CS110: Imperative Problem Solving 17

https://en.cppreference.com/w/cpp/numeric/random/rand
https://en.cppreference.com/w/cpp/numeric/random/rand
https://en.cppreference.com/w/cpp/numeric/random/rand
https://en.cppreference.com/w/cpp/numeric/random/rand

