
Pointers

Computer Memory

• Random Access Memory(RAM)
• ThetimeittakestoaccessagivenelementinRAM isthesame foranyother random

element inmemory

• Store data for runningprograms
• Allvariablesand arraysarestored inRAM
• Everybyte(group of8 bits) in memory has an address
• Likeone bigarraywhereeachaddress isan indextoabyteofstoragespace

• In Cwecangettheaddress ofavariableusing the& operator
(address operator)

Addressing in RAM

… …

Addressing in RAM

… …

Bytes

Addressing in RAM

… …

Bytes

100 101 102 103 104 105 106

Addressing in RAM

intx;

… …

Bytes

100 101 102 103 104 105 106

Addressing in RAM

int x; // 32 bits or 4 bytes
Assuming x is stored at100.

Bytes

100 101 102 103 104 105 106

… X …

Addressing in RAM

int x; // 32 bits or 4 bytes
Assuming x is stored at100.
char c; // 8 bits or 1 byte
Assuming c is stored at 104.

Bytes

100 101 102 103 104 105 106

… X C …

Addressing in RAM

int x; // 32 bits or 4 bytes
Assuming x is stored at 100.
char c; // 8 bits or 1 byte
Assuming c is stored at 104.

Bytes

100 101 102 103 104 105 106

… X C …

NOTE: Variables can be stored at any
address,andinmost cases,we do not
have to worry about what specific
address number isused.

Pointers

A pointer is a variable that stores an address (a number which is a
location in memory, or RAM)
• Through a pointer, a value can be accessed indirectly by its address

rather than by its original name

Pointer Intro

• Using the & operator gets the
address of a variable.
• When we call scanf(), we are

allowing scanf() to access x using
its address

Pointer Intro

• Declare pointers with the type of
the data it will point to and an *
• Declare a pointer pointer_to_x

and make it point to x:
• int *pointer_to_x = &x;

Pointer Intro

• Several syntax options:
• int *pointer_to_x;
• int* pointer_to_x;
• int * pointer_to_x;

• Assign the address of variable x
to pointer_to_x
• pointer_to_x = &x;

Pointer Intro

• Dereferencing
• Access the data located at the

address stored by a pointer
• * pointer_to_x = 5;
• If pointer_to_x is a pointer to x,

*pointer_to_x is the value of x

Pointer Intro

Pointer Parameters

• void square_and_cube(int x,
int *square_pointer,
int *cube_pointer)

• Calculate both the square and
cube of x, and return them via
pointers

Pointer Parameters

• Pointer parameters
• int *square_pointer and int

*cube_pointer indicate that these
parameters are pointers to
integers

Pointer Parameters

• Dereferencing pointer variables
• square_pointer points to the

square variable
• dereferencing the pointer variable

will let us assign the values of x * x
and x * x * x to square and cube
respectively

Pointer Parameters

Why return values from functions at all?

sequence_sum()

sequence_sum()

sequence_sum()

