Review

e char word[50]

* The length of the string to be stored must equal the size of the character array

Review

e char word[10]
 What is the length of the longest string that can be stored in word?

Review

e char word[20] = “CS110”

* what is the length of the above string?

Standard Input

Standard Input (stdin)

* Stream of data available to the program

* continually get the next thing in the stream

* not a set block of data that we can go backwards and look at things earlier in
the stream

* take the input as it comes
* to retain, we need to store it in the program

A scanf() call

#include <stdio.h>

int main() {
int n;
printf("Enter a number: ");
scanf("%i", &n);

printf("You entered %i\n", n);

return 0;

Program in terminal:

Enter a number: 10 is my input number
You entered 10

 scanf() looks for digits at the
input stream

* when it read something that
wasn’t a digit, a space, it
converted the digits it read into
an integer and returned

* Entire piece of text would have
been available to the program
had the reading continued

Standard Input

e scanf() and getchar() both read from standard input

» scanf() converts the next thing in the stream to an integer or floating-point
number

e getchar() just returns the next individual character

Blocking

* A function that reads from stdin (like scanf()) will block (pause
execution) until new data is available from stdin

 scanf() makes the program stop and wait until there’s new data in the
input stream

* The keyboard input isn’t sent to the input stream until the user hits
enter

Input from files

We’ve worked with keyboard input so far
* the program stops and the input is not available until you hit enter
* New keyboard input is not available from stdin until the user presses enter

* Contents of a file can also be used as a program’s stdin
 Command line syntax: ./program < filename
* The contents of filename will be used as stdin for program

* If <is reversed to > the output will be written to the file, overwriting
the file’s original contents

Input from files

input.txt U

input.txt
1 35

(base) zwkbhowmiknb@2:el4-letter_frequency kbhowmik$./stdin < input.txt
Enter a number: You entered 35

EOF

* Read everything from the standard input until there’s nothing else to
read

* We can use loop

e getchar() will return a special value called EOF if there’s nothing else
to read from the stdin

ASCII Code

* The standard that defines each character means is known as ASCI|
e printf() and putchar() interpret the value of char variables as an ASCI|
value
* print out the corresponding character associated with its value
* ASCII code/ integer value of A is 65. When we store A as a char, it’s storing 65

e char is an 8-bit value
e 256 different values can be stored in one char variable

https://www.ascii-code.com/

ASCII Code

#include <stdio.h>

int main() {
char c;

printf("Enter a character: ");
scanf("%c", &c);

printf("The ASCII value of the input character: %i\n", c);

return 0;

}

Enter a character: A
The ASCII value of the input character: 65

https://www.ascii-code.com/

ASCII Code

| DEC_| OCT | HEX |

OIN O dlW N =IO

©

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00
01
02
03
04
05
06
07
08
09
0A
0B
oc
oD
OE
OF
10
7
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F

�

	
&4#010;


&4#013;

&4#015;
&4#016;

&3#026;

&4#031;

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
S|
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
L
ESC
Fs
GS
RS
us

Null char

Start of Heading
Start of Text

End of Text

End of Transmission
Enquiry
Acknowledgment

Bell

Back Space
Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift Out / X-On

Shift In / X-Off

Data Line Escape
Device Control 1 (oft. XON)
Device Control 2
Device Control 3 (oft. XOFF)
Device Control 4
Negative Acknowledgement
Synchronous Idle

End of Transmit Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator

Unit Separator

* The first 32 characters are not printable
characters

 called special control characters

e Character with the value 0
 null character

e thatis placed at the end of a string in an array of
characters

e can use character 0 instead of ‘\0’

* None of the values are EOF
* out of the range that can be stored by a char
e EOF actually an integer
e usually represented with -1

» getchar() will return EOF when there’s nothing
else to read

* EOF will overflow a char

* It’s a value that cannot be properly represented
using char

https://www.ascii-code.com/

Reading from stdin until EOF

 Anintis used to hold the result of
getchar()

» getchar() is okay with taking an int
instead of a char as the character it . .
needs to print int main()

#include <stdio.h>

* Continually take input from the user Lt C:

and Brmt using putchar() as long as

getchar() doesn’t return EOF while ((c = getchar()) != EOF)
e Utilize the fact that c = getchar() is an putchar(c);

assignment expression }
* After the assignment haBpens, the

value of this expression becomes the return 0;

value that was assigned }

Reading from input file

#include <stdio.h> input.txt U X
) input.txt
int main() {

_ 1 This is a test.
alphe e -

2

3 This test is for reading some text.
while ((c = getchar()) '= EOF) {

putchar(c);

return 0: (base) zwkbhowmiknb@2:el4-letter_frequency kbhowmik$./stdin < input.txt
£ This is a test.

This test is for reading some text.

Reading from stdin until EOF

e Without the condition for
terminating the loop, we’ll just
get a stream of nonsense

#include <stdio.h>

int main() {

because getchar() is returning Ttk

EOF and assigning it to ¢ but

when we’re trying to print it out, while ((c = getchar())) |{
since this is not a valid character, } putchar(c);

gibberish is printed

e Terminal doesn’t know how to return 0;
visually represent EOF ;

Reading from terminal

e getchar() will block as long as

#include <stdio.h> the user types
int main() A * Upon hitting enter, the input will
int c; be printed using putchar()
while ((c = getchar()) '= EOF) { . getchar() will block again for
putchar(c): input from user
; e ctrl+d can be used to indicate
_ EOF for keyboard input
return 0;

Letter Frequency

count

index

http://csweb.wooster.edu/kbhowmik/cs110/week07/lecture03/letter_frequency.html

