Arrays of Structure

Review: structure

e structure is useful in logically grouping related elements together.

* The date structure keeps track of one variable, instead of three, for
each time that is used by the program.

* to handle 10 different times in a program, only necessary to keep track of 10
different variables, instead of 30.

Arrays of Structures

* Better handling of 10 different dates involves the combination of two
powerful features of the C programming language

e structures
* arrays.

* C does not limit you to storing simple data types inside an array

 Perfectly valid to define an array of structures
 struct date birthdays[15];

Calculate speed using arrays

void print_speeds(const double speeds[], size_t trip_count) {
printf("Average speeds:\n");
for (size_t i = @0; i < trip_count; i++) { int main() {
printf("Trip %zu: %.21f mi/h\n", i + 1, speeds[il]); size_t trip_count = 5;
}

double distances[] = {34.2, 156.8, 239.6, 3.1, 1698.4};

double times[] = {50.5, 130.25, 220.75, 8.5, 1513.75};
double calculate_speed(double distance, double time) {

double speed = distance / time * 60;

double speeds[5];
return speed;

y calculate_speeds(distances, times, speeds, trip_count);
void calculate_speeds(const double distances[], const double times[print_speeds(speeds, trip_count);
double speeds[], size_t trip_count) {
for (size_t i = 0; i < trip_count; i++) { return 0;
speeds[i] = calculate_speed(distances[i], times[i]); }
}

Calculate speed using structure

int main() {
printf("How many trips would you like to enter? ");
size_t trip_count;
scanf("%zu", &trip_count);

struct trip trips[trip_countl];
for (size_t i = 0; i < trip_count; i++) {

ctriict trip { printf("Enter th(? distanse in miles for this trip: ");
scanf("%1f", &trips[i].distance);

double distance;
. printf("Enter the time in minutes for this trip: ");
double time; scanf ("s1f", &trips[il.time);

double speeds[trip_count];
calculate_speeds(trips, speeds, trip_count);
print_speeds(speeds, trip_count);

return 0;

Calculate speed using structure

void print_speeds(const double speeds[], size_t trip_count) {
printf("Average speeds:\n");
for (size_t i = 0; i < trip_count; i++) {
printf("Trip %zu: %.21f mi/h\n", i + 1, speeds[i]);

double calculate_speed(struct trip trip) {
double speed = trip.distance / trip.time * 60;
return speed;

void calculate_speeds(const struct trip trips[], double speedsI],
size_t trip_count) {

0; i < trip_count; i++) {

calculate_speed(trips[il);

for (size_t i
speeds [i]

int main() {

printf("How many trips would you like to enter? ");

size_t trip_count;

scanf("%zu", &trip_count);

struct trip trips[trip_countl];

for (size_t i = 0; i < trip_count; i++) {
printf("Enter the distance in miles for this trip: ");
scanf("%1f", &trips[i].distance);
printf("Enter the time in minutes for this trip: ");
scanf ("%1f", &trips[i].time);

double speeds[trip_count];

calculate_speeds(trips, speeds, trip_count);

print_speeds(speeds, trip_count);

return 0;

Best Pizza Value Assignment

* You will finish writing a program that
 asks for the size and price of several pizzas
 prints the pizza that is the best value
* best value pizza is the one that has the lowest price per square inch.

* The portion of the program that asks for user input and prints the
result is already written for you

* You will need to implement 3 functions in pizza.c to finish the
functionality of the program.

Pizza structure

struct pizza {
unsigned int size;
double price;

main()

* builds an array of struct pizza instances
e passes it to best_value_pizza()

best value pizzal()

* The prototype and documentation for this function are in pizza.h, you
must implement the function in pizza.c

* two helper functions:

e circle_area()

e price_per_square_inch()
purpose of writing these functions is for organization.
best_value_pizza() will be less cluttered with calculation details.

best_value_pizza() function must use price_per_square_inch() when figuring
out how good of a value the pizza is

e price_per_square_inch() must use circle_area()when calculating the price per square
inch.

circle area()

* use the M_PI constant as the value of pi
* This is defined in math.h, which is already included for you in pizza.h

* Note that M_PI is not part of the C standard, but is an extension

added by GCC.
* This is why the Makefile for this project uses std=-gnu99 instead of std=-c99.

e circle_area() takes the radius of a circle as an argument, while
the diameter is stored in struct pizza.

* This is because the area of a circle is typically expressed using the radius, but
pizzas are usually marketed using the diameter of the pizza.

» Keep track of the pizza with the lowest price per square inch as you
loop through the pizzas

* Avoid re-calculating the price per square inch of the best pizza so far
in every iteration of the loop

e good idea to have another variable to keep track of the price per square inch
of the best pizza so far.

Rubric

e 2 - Function best_value_pizza() does not do any price per square inch
calculations directly, but rather calls price_per_square_inch()

2 - Function price_per_square_inch() does not calculate the area of
the pizza directly, but rather calls circle_area()

* 6 - Program passes all test
e 2 - Proper style

