Data Types and Number
Representation

How do computers store numbers?

* All datain a computer is stored as binary using series of 1’sand 0’s

 Each binary digit is called a bit

* In the C programming language, each variable has a fixed number of
bits that is can use to represent different values

Binary Representation

« How many numbers can we make with:

* one bit?
« 0,1
2 possible values

* two bits?
- 00, 01, 10, 11
* 4 possible values

 each time we add a digit we increase our value range by a power of 2

* n digits =21 possible values

Binary Representation

Decimal Binary Representation
Number

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0

Binary Representation

Decimal Binary Representation Converting to two’s complement:
Number

-4 1 0 0 * Invert all the digits
* Add1
. |

3 1 0 1 Example

* 3inbinaryis 011
* Inverting the digits, we

-2 1 1 0 have 100
 Adding 1 to 100 we get
-1 1 1 1 101 (-3)
0 0 0 0
1 0 0 1
2 0 1 0

Binary Representation

« How many numbers can we make with:

* three bits?

« 23=8 possible values

« Range of values if we represent negative number
. -4t03 (-22 to 22-1)

» Range of values if we represent only non-negative numbers
.« 0to7 (0to23-1)

* In the C programming language, each variable has a fixed number of
bits that is can use to represent different values

Storing Binary Data
* We group bits together in units of 8 called bytes.
« Abyteis the smallest unit of data we can access from memory (RAM)

* Data types in C are used to representvalues

« Data types have a certain number of bits available for storage
« The amount of storage is always in groups of 8 bits (1 byte)

Int Data Type

» Stores positive and negativeinteger values

 According to the C standard must be at least 16 bits (2 bytes)
« Most modern computers use 32 bits (4 bytes)

» Assuming we have 32 bits for an int, that is 232 different numbers

 Can be positive, negative, orzero
o 231-1 positive numbers, 231 negative numbers, and 0
* Range: -231to231-1 (-2,147,483,648 t02,147,483,647)

A 32-bit unsigned int only stores positive numbers 0 to 232 - 1

Integer Overtlow

Binary Representation * Largest possible number =3
Number . Adding 1 to 3 (011) will

-4 1 0 0 result in
+ 100 (-4)
-3 1 0 1
-2 1 1 0 e Adding1to-1(111)
will result in
! 1 1 1 . 1000
0 0 0 0 * We have only 3 bit

available to us
1 0 0 1 e 4t bit of the result
will be truncated
 Final result will be
3 0 1 1 000 (0)

Underflow

Decimal Binary Representation
Number

-4

-3

-2

1

1

1

* Smallest possible
number =-4
e Subtracting 1 from
-4 (100) will result
in
011 (3)

Unsigned Integer

Decimal Binary Representation * Sometimes we know
Number

that the value to be

0 0 0 0 . .
stored in an integer
1 0 0 1 variable will always be
. 5 0 0 positive
* For example, when it’s
3 0 1 1

being used to only
4 1 0 0 count things
* |n that case, we can
declare the integer
6 1 1 0 variable to be unsigned

Float Data Type

 Represents realnumbers
« Values with decimal precision

 Uses 32 bits of storage (4 bytes)
 Range is wider than an int
« Max valueis ~3.4*1038

* While there are infinite values in the range only 232 values can be
represented
 This leads toapproximation(rounding)

Double Data Type

» Like float and stores real numbers (decimal values)

 Unlike float, the storage is doubled to 64 bits (8 bytes)

* Max valueis~1.8%10308

* Much greater precision

* Usually better to use double than float

 Unless you are storing a very large number of decimal values or have limited
resources

Data Typeson D

ifferent Platforms

....................
R |

. Mac Laptop
' d_ (64-bitOS)
e Bool: 8
e char: 8
e short int:16
e int: 32

* long int: 64

* long longint:64
* float: 32
 double: 64

o RaspberryPi
SRS (32-bitOS)
 Bool:8
 char: 8
 short int:16
* int: 32

* long int:32

* long longint:64
* float: 32

* double: 64

g Arduino (8-bit
@ microcontroller)

CS5110: Imperative Problem Solving

* Bool: 8
 char: 8

* short int:16

* int: 16

* long int:32

* long longint:64
* float: 32

* double: NA

Data Types

Integer int x %i
Unsigned unsigned int x %u
Integer
Long long int x %li
Unsigned unsigned long x %ul
Long
Float float x %f

Double double x %lf

