
IF Statement and Conditions

Basic Usage

Suppose we want to run different code when certain conditions are (or are not)
met.

Empty String Example

name = ''

print(name)

If we print an empty string we get None. Ideally, we would like to avoid that
situation and print something informative instead. We can use an if statement to
check if a condition is True or False and then run specific code depending the the
result of the condition. Condition statements MUST evaluate to True or False.

name = ''

if name == '':

 print('Unknown Name')

Above we use the conditional operator == to ask if name is equal to '' (an empty
string). Note the colon (:) at the end of the if statement and the indention of the
line of code following it.

Below is the list of comparison operators you can use in an if statement.

Operator Description Example

==
Equality: Checks if the
operands on both sides are the
same

a == a is

True
a == b is

False

!=
Not Equal: Check if the
operands on both sides are
different

a != b is

True
a != a is

False

>

Greater Than: Check if the left-
hand side operand is greater
than the right-hand side
operand

1 > 0 is True

-1 > 0 is

False
1 > 1 is False

<
Less Than: Check if the left-
hand side operand is less than
the right-hand side operand

0 < 1 is True

0 < -1 is

False
1 < 1 is False

>=

Greater Than or Equal To:
Check if the left-hand side
operand is greater than or
equal to the right-hand side
operand

1 >= 0 is

True
1 >= 1 is

True
-1 >= 0 is

False

<=

Less Than: Check if the left-
hand side operand is less than
or equal to the right-hand side
operand

0 <= 1 is

True
1 <= 1 is

True
0 <= -1 is

False

(NOTE: There are other types of conditional operations that we will discuss later.)

Back to our code, nothing happens if we actually have a value for name. We’ll
change that by adding an else clause.

name = 'Kowshik'

if name == '':

 print('Unknown Name')

else:

 print('Hello, ' + name + '!')

Now if the first condition is found to be False, then code in the else clause gets
executed.

Let’s make this a bit better. We’ll ask the user to type in a name.

name = input('Please enter a name: ')

if name == '':

 print('Unknown Name')

else:

 print('Hello, ' + name + '!')

The input() function takes a string argument to display a request for data from
the user (the string can be empty, but that usually isn’t good practice). The user
can then type in some text (using Thonny’s Shell window) with the keyboard and
submit it to the program by pressing the enter key. The text is then returned by
the input function as a String.

We are not limited to two possible outcomes for an if statement. We can create
more conditions before the else statement using elif (read as else if).

name = input('Please enter a name: ')

if name == '':

 print('Unknown Name')

elif name == 'Kowshik:

 print("Oh...it's you again..")

else:

 print('Hello, ' + name + '!')

Here, if the first condition is False we then can check the elif condition. You can
have many elif statements, but only one if and else.

Intermediate Usage

The and / or Operators

The if statement is capable of checking conditions with multiple clauses. Assume
the simple example which is always True.

if True:

 print('True')

else:

 print('False')

Additional conditions can be adding using the logical operators and or or.

if True or False:

 print('True')

else:

 print('False')

The logical operator or only evaluates to False if both conditions on either side also
evaluate False.

if True or False:

 print('True')

else:

 print('False')

The logical operator and only evaluates to True if both the conditions on either side
are also True.

if True and False:

 print('True')

else:

 print('False')

The or logical operator has a higher precedence than and.

if True and False or True:

 print('True')

else:

 print('False')

False or True is evaluated first, which is True, and then True and True also results
in True. This is a bit confusing sometimes, so you can always use these truth tables
to help you remember.

AND True False

True True False

False False False

OR True False

True True True

False True False

To read these tables, observe where the row and columns intersect. That displays
the result of the logical operation indicated in the top left most cell.

The not Operator

The not operator takes the value of a condition and negates it. In mathematical
terms, you can think of the not operator like multiplying any number by -1. If the
number is positive (True in our case) the result becomes negative (or False). If a
number was already negative, then multiplying by -1 makes the number become
positive.

This is important because sometimes it is useful to know when something isn’t
True.

account_balance = 10

withdraw_amount = 2

if not (account_balance - withdraw_amount) < 0:

 print('Safe to withdraw funds')

 account_balance = account_balance - withdraw_amount

else:

 print('Account overdrawn')

For example, we subtracted the withdraw_amount from the account_balance and
then checked if the result of 8 was less than 0. Since 8 < 0 evaluates to False, we
need to negate that value in order for the statement to be True and the code to
print and subtract the withdraw amount will be run.

The in Operator

The in operator allows you to check if an element exists in a collection. You can
also use the not in operator to check if something isn’t present in a collection. A
String is an example of a collection as it is made up of a series of characters.

my_string = 'apple'

if 'e' in my_string:

 print('Found it!')

if 'z' not in my_string:

 print('Character not found!')

There are other collections that the in operator will work with and we’ll talk more
about that in another guide.

Advanced Usage

None

In python, when variables do not have any data, they are given the value None.
Variables can be also assigned None to indicate that they have no data. A variable
assigned an empty string will also have the value None.

my_value = None

name = ''

print(my_value)

print(name)

Running the code above will print the word None out twice.

This can be useful in if statements as a variable that holds None used in a
conditional statement will evaluate to False.

name = ''

my_value = None

if name:

 print("There is data!")

if not my_value:

 print("There is no data!")

Non Exclusivity

From a logical standpoint, sometimes the code we want to run is based on
conditions that are not mutually exclusive (the results of the conditions can impact
one another). There is a classic interview question with the following rules:

• Take a number
• If the number is a multiple of three print “Fizz”
• If the number is a multiple of five print “Buzz”
• If the number is both a multiple of three and five print “FizzBuzz”.

Let’s try to implement that and take some user input. Notice that we use the
function int to convert the String data from the input function into an integer. Also
recall that the modulus operator (%) returns the remainder that results from
division. If the remainder is 0, that means the number divides evenly.

my_number = int(input("Enter an integer: "))

if (my_number % 3) == 0 and (my_number % 5) == 0:

 print('FizzBuzz')

elif (my_number % 3) == 0:

 print('Fizz')

elif (my_number % 5) == 0:

 print('Buzz')

This looks pretty good. However, the condition for printing “FizzBuzz” is directly
related to the other two conditions. Could we make the logic easier to understand?

my_number = int(input("Enter an integer: "))

output = ''

if (my_number % 3) == 0:

 output += 'Fizz'

if (my_number % 5) == 0:

 output += 'Buzz'

if output:

 print(output)

This code exhibits the DRY principle (Don’t Repeat Yourself). Instead of checking if
our number is divisible by 3 and 5 twice, we now execute each if statement and
conditional check once separately and build up a correct answer. The DRY concept
is most useful for large projects, but keeping an eye out for redundant code and
simplifying when possible is a good habit to build.

	IF Statement and Conditions
	Basic Usage
	Empty String Example

	Intermediate Usage
	The and / or Operators
	The not Operator
	The in Operator
	Advanced Usage
	None
	In python, when variables do not have any data, they are given the value None. Variables can be also assigned None to indicate that they have no data. A variable assigned an empty string will also have the value None.
	Non Exclusivity

