
Detecting Video Game-Specific Bad Smells in Unity Projects

Antonio Borrelli
University of Sannio

Benevento, Italy

aborrelli@unisannio.it

Vittoria Nardone
University of Sannio

Benevento, Italy

vnardone@unisannio.it

Giuseppe A. Di Lucca
University of Sannio

Benevento, Italy

dilucca@unisannio.it

Gerardo Canfora
University of Sannio

Benevento, Italy

canfora@unisannio.it

Massimiliano Di Penta
University of Sannio

Benevento, Italy

dipenta@unisannio.it

ABSTRACT

The growth of the video gamemarket, the large proportion of games

targeting mobile devices or streaming services, and the increasing

complexity of video games trigger the availability of video game-

specific tools to assess performance and maintainability problems.

This paper proposes UnityLinter, a static analysis tool that supports

Unity video game developers to detect seven types of bad smells

we have identified as relevant in video game development. Such

smell types pertain to performance, maintainability and incorrect

behavior problems. After having defined the smells by analyzing

the existing literature and discussion forums, we have assessed

their relevance with a survey involving 68 participants. Then, we

have analyzed the occurrence of the studied smells in 100 open-

source Unity projects, and also assessed UnityLinter’s accuracy.

Results of our empirical investigation indicate that developers well-

received performance- and behavior-related issues, while some

maintainability issues are more controversial. UnityLinter is, in

general, accurate enough in detecting smells (86%-100% precision

and 50%-100% recall), and our study shows that the studied smell

types occur in 39%-97% of the analyzed projects.

CCS CONCEPTS

• Software and its engineering→ Application specific devel-

opment environments;

KEYWORDS

Video Game Development; Bad Smells; Static Analysis; Linters

ACM Reference Format:

Antonio Borrelli, Vittoria Nardone, Giuseppe A. Di Lucca, Gerardo Can-

fora, and Massimiliano Di Penta. 2020. Detecting Video Game-Specific Bad

Smells in Unity Projects. In 17th International Conference on Mining Software

Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3379597.3387454

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387454

1 INTRODUCTION

Video games represent a conspicuous and increasing share of the

software development market. In 2018, the video game industry

has generated 134.9 billion dollars, with over 10% increase over

2017 [25]. Such a market is changing continuously also in terms of

platforms on which video games are deployed. In the past, video

games mainly targeted consoles and desktop computers; nowadays

mobile devices account for nearly half of the market [24], and the

current trend is the streaming of video game contents.

While the video game market is increasing, development skills in

this area still represent a niche. Just to give an idea, Stack Overflow

features over 1.5M discussions tagged [java] and 1.2M tagged An-

droid, while only 50k are about Unity3D. It is therefore clear how in

this context developers may need suitable support while creating

their video games, helping them to avoid introducing performance

bottlenecks, or making the game difficult to maintain and evolve.

Static code analysis tools (SCAT) are a typical support developers

have while coding. Such tools, known also as “linters” (from the

first tool developed by Johnson for the C language [28]) analyze the

source code or the compiled (e.g., bytecode) program to highlight

several problems. These include, among others, likely bugs (e.g.,

type conversions, or potentially wrong operators applied to certain

types), performance issues (e.g., use of programming constructs

that are known to be inefficient), security vulnerabilities, or coding

style issues (e.g., inadequate commenting or choice of identifiers).

The use of SCAT in software development has been investigated by

several studies. For example, Johnson et al. [27] and Beller et al. [18]

have studied the usage of static analysis tools in software projects.

Other studies focused on investigating the extent to which such

tools can be used to detect real faults [45, 48, 50], or how they are

used in continuous integration pipelines [49].

Many SCAT are general-purpose, e.g., FindBugs [5], PMD [7] or

CheckStyle [4] for Java, Rubocop [1] for Ruby, or Splint [22] for C.

Others analyze specific types of applications, e.g., Android Lint [2]

detects Android-specific issues.

In this paper, we propose UnityLinter, a linter for video games

developed with Unity [10]. While there are many other video game

development frameworks (e.g., Unreal [11] or Blender [3]), we have

chosen Unity because it is free (within certain usage limits) and for

this reason, it has also been adopted in the open-source community

as well as for educational purposes. UnityLinter statically analyzes

the source code (written in C#) and other artifacts of a Unity video

games, and can detect 7 types of video game code smells. Such

198

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3379597.3387454&domain=pdf&date_stamp=2020-09-18


smells cover different quality aspects of video game development,

namely performance, maintainability, and correct behavior.

We first elicited a set of 6 smells, by analyzing existing literature

on video game design [38, 40], by discussing with experts, and

by analyzing discussions on forums. Then, we surveyed 68 video

game developers and gathered their perception and feedback about

the smells we wanted to detect. This also helped us to refine the

smell detection rules and to detect an additional smell over the 6

we initially conceived. Finally, we analyzed 100 Unity open source

projects hosted on GitHub, in order to (i) detect smells and therefore

assess the magnitude of the investigated phenomenon, and (ii)

manually validate a statistically representative sample of 420 smells

to evaluate UnityLinter’s precision, and inspect five complete video

games to evaluate UnityLinter’s recall.

Results of the study indicate that, overall, developers well per-

ceive the smells we defined, in particular, those related to perfor-

mance and game behavior, while maintenance-related smells are

more controversial. Our manual validation indicates that UnityLin-

ter achieves, for the different smell types, 86%-100% precision and

50%-100% recall. Depending on the type, the presence of the studied

smells in the analyzed projects varies between 39% and 97% of the

analyzed projects.

The contribution of this paper can be summarized as follows:

(1) we define 7 types of bad smells that may occur in video game

development validated through a study;

(2) we propose UnityLinter, a linter for video games developed

in Unity;

(3) we report the results of a study assessing the diffuseness of

the studied smells, within the accuracy limit of UnityLinter;

(4) we make the dataset of the study available [19].

2 BACKGROUND NOTIONS ABOUT UNITY

This section provides a brief introduction to Unity, to let the reader

properly understanding the concepts introduced throughout the

paper. Fig. 1-a shows a screenshot of the Unity development environ-

ment. A Unity project can either be a 2D or 3D project (in the follow-

ing we will mainly show examples for 3D projects, as 2D is mostly a

subset of 3D) composed of one or more scenes. A scene describes an

interaction area, e.g., a piece of the game world where a player in-

teracts with other objects. The scene, in turn, contains GameObjects

that are instantiated either statically or dynamically. In our example,

the project includes a scene SampleScene, whose object hierarchy

is visible on the left-side pane of the IDE. More specifically, a scene

contains a camera (Main Camera), which is the perspective from

which the user sees the scene, a light (Directional Light), and a

Cube object (also visible at the center of the screen).

Other than using the typical extension mechanisms of object-

oriented (OO) programming, Unity allows developers to decorate

an object with various kinds of components, that can be visible on

the right-side pane (i.e., the Inspector). More specifically, an object

has a default property named transform, which specifies the object

position, rotation, and scaling, and other components, e.g., a collider

that handles collisions with other objects, a material (in our case

named MyColor) that specifies the object’s visual aspect. Last, but

not least, it is possible to add one or more scripts to specify behavior.

In our case, the cube has attached a script namedMove Cube (whose

content is shown in Fig. 1-b).

Unity’s behavior is specified using scripts written in C#1. A

relevant class in Unity is MonoBehaviour, and C# classes at-

tached to GameObjects inherit from MonoBehaviour. A Unity run-

ning project works as a loop. First, the Start() method of all

MonoBehaviour classes attached to GameObjects is executed. Then,

the Update() method is called in each frame. Note that Unity fea-

tures variants of Start() and Update() (all covered by UnityLin-

ter), called at different time, e.g., Awake() is similar to Start(),

but is called when a script is loaded, while the LateUpdate()

methods are called after all Update() methods have been invoked.

FixedUpdate() is invoked with a fixed frequency, i.e., it does not

depend on the frame rate.

In the script shown in Fig. 1-b, the Start() method gets the

reference to a component of type Material attached to the cube.

By changing one of its properties, the cube color is changed upon

loading the scene. In each frame (Update() method), a rotation of

one degree over the z-axis is applied to the cube. Besides rotating the

cube, the Update() also dynamically instantiates another object (a

bullet) using the Instantiatemethod. In this case, the reference to

the GameObject is not available in the code but, rather, the object is

loaded from a prefab. In Unity a prefab is a reusable asset (typically a

GameObject or a composition of GameObjects with other attached

components) stored in a .prefab file. A developer can create a

prefab by simply dragging a GameObject from a project’s hierarchy

to the project resources (lower pane).

3 ELICITATION OF RELEVANT VIDEO GAME
SMELLS

While it is not a goal of this paper to identify any possible smell that

could affect a Unity video game, before implementing UnityLinter

we conducted a small investigation to determine what kinds of

smells to detect. To this aim, we relied on multiple sources. Specifi-

cally we (i) discussed our goal with experts in video game devel-

opment, (ii) relied on the content of some textbooks [38, 40], high-

lighting good practices and patterns in video game development,

and, finally, (iii) we leveraged informal knowledge from discussion

forums, namely the Unity Forum, some Reddit channels related to

video games and other Unity development forums. In particular, to

mine potential smell-related discussions, we performed a search on

the forums using the following keywords: (i) “good practices”, (ii)

“bad practices” and (iii) “common mistakes”. On the Unity Forum,

we analyzed discussions in the “support” and “community” sections.

The former collects Unity official manuals, the latter features ques-

tions from the developers’ community. Besides discussions partially

referring to possible bad practices, we found 29 pages (reported in

the online appendix), among those in the Unity Forum and Reddit,

specifically targeting bad practices in Unity development.

Based on the various sources of information, we found the fol-

lowing problems being discussed by developers, and also mentioned

in video game design books:

• The use of Find methods in runtime code, and, in general,

operations on string literals;

• Instantiating and destroying game objects too often;

1Until 2017, Unity also supported Javascript.

199



(a) Unity IDE (b) Monobehaviour script

Figure 1: Unity overview: a) The Unity IDE; b) An example of MonoBehaviour script.

• The presence of performance-intensive tasks in Update()

loops;

• Frame rate not properly taken into account when scripting

logic or animation;

• The use of public global variables, affecting information

hiding; and

• Lack of separation of concerns, i.e., creating incohesive

scripts with too many responsibilities.

Based on such considerations, we defined 6 smell types. This

choice has been driven by different factors: (i) need to cope with

problems that are specific to Unity and video games, and not with

generic issues, such as lack of information hiding, that could affect

any software project; (ii) capability to define a heuristic to detect

the smell statically, even if the detection is approximate; and (iii)

considering smells that cover a range of different kinds of symptoms

Unity projects could exhibit.

In the following, we briefly describe the 6 types of smells we

have identified. We categorize them according to their negative

effect they may cause, i.e., on performance, maintainability and

behavior.

3.1 Performance Smells

Allocating and destroying GameObjects in updates. In Unity,

GameObjects can be allocated statically, i.e., dragging them in the

scene hierarchy through the IDE, or dynamically, i.e., instantiat-

ing them using the Instantiate as explained in Section 2. When

objects are no longer needed, they could be destroyed using the De-

stroy method. Both Instantiate and Destroy are computationally

expensive, and their use in Update()method might affect the game

performances. If the game requires to allocate and destroy many ob-

jects at runtime (e.g., bullets in a shooting game) it is advised to use

an object pool. In other words, a pool of GameObjects is allocated

at runtime and, when required, GameObjects are retrieved from the

pool and disposed there when no longer needed. The source code

in Fig. 1-b exhibits the described smell, as the bullet is dynamically

load and instantiated at every frame.

Getting a GameObject reference finding it by name. In Unity,

a GameObject could gets the reference of another one by searching

it by name. In the example of Fig. 1-a, a GameObject could get the

reference of the Cube using the instruction:

GameObject.Find("Cube")

This access method is discouraged because it affects performances.

A similar problem (FindViewById) is known also in Android [47].

Therefore, it is preferable to avoid this reference mechanism, and

get access to other objects through explicit dependencies instead.

Heavyweight Update methods. Since all Update() methods are

invoked at every frame, performing computationally-intensive op-

erations in such methods might negatively affect performances.

Sometimes this is just unavoidable; however, when possible, it is ad-

vised to factor out computations that do not require to be executed

every time, moving them.

3.2 Maintainability Smells

Lack of separation of concerns. A MonoBehaviour script that

implements at the same time different responsibilities makes the

projects difficult to evolve. For example, let us imagine that a

GameObject implements a player (e.g., a person walking in an open

world). A typical mistake is to implement all the logic of the player

in the same MonoBehaviour script, i.e., getting the inputs from the

controller, determining the object state (e.g., “can walk”, “can jump”,

“can fire”, etc.), and moving the GameObject. It is advisable, instead,

to factor out input handling in a separate class hierarchy (using

a Strategy design pattern) so that the source code attached to the

player object does not have to change if, for example, one wants to

implement an artificial intelligence-handled player. Similarly, the

state management and the player animation should be handled in

separate scripts.

Coupling objects through the IDE Inspector. In Unity, it is pos-

sible to couple a MonoBehavior script to other objects through

the IDE. This works as follows. If a script declares public fields,

or private/protected fields with the [SerializedField] attribute,

200



(a) (b)

Figure 2: Example of static coupling between GameObjects through the IDE Inspector.

such fields will appear as script properties in the Unity inspec-

tor. Then, from the IDE, the developer can just drag objects into

such properties to create a coupling. In the example of Fig. 2-b,

the MonoBehaviour script has two [SerializedField] attributes,

mySphere and myCharacter. As shown in Fig. 2-a, both appear as

properties in the inspector (right pane). Since the developer has

dragged the Sphere into the property, the latter appears filled with

a link to the Sphere object. Instead, there is no object linked to the

myCharacter property.

The main negative effect of this programming practice is the

lack of understandability, i.e., couplings will not be visible from the

source code, but only from the Inspector. Much worse, if a developer

edits the source code, or renames scripts or objects, couplings are

lost, and they need to be restored manually. There are alternatives

to this, including the use of a messaging system to couple different

objects in the game. However, such alternatives might be, in some

cases, sub-optimal for what concerns performances.

3.3 Behavioral Smells

Animation speed depends on the frame rate. If a script per-

forms a translation, rotation, or scaling of a fixed magnitude to

an object in an Update method, such a transformation is repeated

at every frame. As a result, the animation might be more or less

fast depending on the frame rate. This smell is also evident in the

Sphere translation of Fig. 2-b. To avoid the smell, a typical solution

adopted is to multiply the magnitude by Time.deltaTime, which

returns the delta time between two subsequent frames. In other

words, the source code in Fig. 2-b becomes:

mySphere.transform.Translate(0f, 0f,
1f*Time.deltaTime);

In such a way, the animation speed will be independent of the

frame rate.

4 SMELL RELEVANCE ASSESSMENT

After having identified possible bad smells to detect, we wanted to

investigate whether they are considered as relevant by developers,

and possibly worthwhile of being addressed. Therefore, we address

our first research question:

RQ1: To what extent are the considered bad smells rele-

vant for video game developers?

Figure 3: RQ1 survey questionnaire: example of question.

4.1 Relevance Assessment Methodology

To address RQ1, we conduct a survey with experts in video game

development. The survey is composed of five sections:

• A first section, where demographic information about re-

spondents is collected. More specifically, we asked about: (i)

the domain in which they work; (ii) their role in the orga-

nization (e.g., developer, project manager); (iii) the years of

experience in software development; and (iv) more specifi-

cally, the years of experience in development with Unity.

• Three sections in which we ask developers to provide their

perceived relevance about smells related to Performance,

Maintainability, and Behavior. For each smell, we provide a

brief description of the problem, outlining its consequences

201



Table 1: Perceived relevance of the 6 smell types.

Strongly disagree Weakly disagree Borderline Weakly agree Strongly agree

Smell Perceived relevance

Allocating and destroying GameObjects in updates 10% 79%10%Q1

Heavyweight Update methods 7% 82%10%Q2

Getting a GameObject reference finding it by name 3% 91%6%Q3

Lack of separation of concerns 10% 66%24%Q5

Coupling objects through the IDE Inspector 34% 31%35%Q4

Animation speed depends on the frame rate 6% 91%3%Q6

and ways to avoid or mitigate the smell. Then, we ask to pro-

vide a relevance score in a 5-level Likert scale [41]. Finally,

for each question, the respondent could add an optional open

comment. An example of question for the smell “Allocating

and destroying GameObjects in updates” is reported in Fig. 3.

• A final section with questions about the general, perceived

usefulness of a Unity linter, i.e., (i) whether they perceive

the availability of such a tool useful, and (ii) whether they

would be willing to adopt it (note: somebody could perceive

it as useful, but not for her/him, just for some categories of

users, e.g., junior developers). Finally, we ask to provide free

comments about possible smells the respondent perceive as

relevant but that was not considered in our study.

To recruit participants, we posted the questionnaire on Reddit

channels related to video games and Unity development, namely

gamedev and unity3d. When we posted the questionnaire, we added

a short message explaining its purpose, the estimated duration (10-

15 min.) and a message telling that we would only use the collected

data in aggregated, anonymized form.

We report the results of RQ1 by showing the perceived relevance

in form of diverging stacked bar charts. We also discuss the open

comments made by the respondents.

4.2 RQ1: Relevance Assessment Results

After two weeks of keeping the survey open, we obtained a total of

68 responses. 26 respondents had less than 5 years of development

experience, 26 between 5 and 10 years, and 15 more than 10. About

Unity, 47 respondents had less than 5 years of experience, 19 be-

tween 5 and 10, and 1 more than 10. One did not provide any answer

to demographic information. Most of the respondents (61) were

professional developers, besides 3 product owners, 2 students, and

one manager. In terms of development domain (multiple answers al-

lowed), most of the answers mentioned “Video game development”

(48) and Virtual reality (15). Others include generic software de-

velopment/consulting (6), computer graphics (4), content platform

provider (3), or medical software (2).

Table 1 reports, in the form of diverging stacked bar charts the

perceived relevance of the 6 smell types. The three percentages

shown in the graph indicate the proportion of disagreements, neu-

tral responses, and agreements respectively. Also, dark/light green

indicates the proportion of “Strongly agree” and “Agree” responses,

whereas dark/light brown indicates the proportion of “Strongly

disagree” and “Disagree” responses.

Allocating and destroying GameObjects in updates. Re-

spondents generally agree (79% of positive answers) about the

usefulness of using object pools instead of allocating/destroying in

Update() methods. At the same time, some respondents were neu-

tral or even disagreed. For some of them, the object pool may even

introduce bugs in the implementation, whereas others indicated

this is a good practice, but they apply it only where the specific

implementation requires it. In other words, an occasional alloca-

tion/destroy is acceptable, whereas a massive allocation/destruction

of objects makes the object pool worthwhile. Also, pool size and

allocation frequency create a trade-off between using the pool or

not, because a large pool might result in a waste of allocated mem-

ory. Finally, one respondent mentioned how the more recent C#

runtime makes garbage collection (activated upon Destroy) more

efficient than before.

Heavyweight Updatemethods. In this case, 82% of the respon-

dents agree about the smell. At the same time, they also indicate that

(i) as expected, a proper analysis of this smell requires a run-time

profiler, (ii) Unity handles long call stacks pretty well, (iii) nested

loops may be a good indicator of potential problems, but only when

the level of nesting is over 3-4. Finally, respondents suggest using

coroutines (a Unity mechanism for multi-threaded execution) to

alleviate this problem.

Getting a GameObject reference finding it by name. Al-

most all respondents (91%) indicate that the use of Find is a bad

practice. Besides performance-related effects, Find also makes the

source code fragile in case somebody renames objects. One respon-

dent indicated that the use of Find can still be a good practice

when retrieving a reference in an object hierarchy (for example,

retrieving the reference to the head in a humanoid model from the

upper-level container object). Respondents recommended creating

coupling through the inspector, instead.

Lack of separation of concerns. Respondents generally agree

(66%) about the usefulness of separating concerns. However, there

is a substantial percentage (24%) of neutral responses, where re-

spondents also said “It depends”, mentioning that an excessive frag-

mentation of responsibilities in multiple MonoBehaviour scripts

may result in a waste of effort, code more difficult to be understood,

and, above all, it may negatively affect performances.

Coupling objects through the IDE Inspector. This is the

most controversial of our smells: 31% of positive responses, 34%

negative, and 35% of neutral. While respondents agree that an ex-

cessive level of coupling makes the project difficult to maintain,

202



16% 64%19%Q7

(a) UnityLinter is useful

28% 51%21%Q8

(b) I would use it

Figure 4: Survey responses on whether: (a) respondents per-

ceive UnityLinter as useful, and (b) they would use it.

coupling through the inspector has numerous advantages. First,

it is better than other solutions (use of Find or messaging sys-

tems) in terms of performances. Second, it is easy to use even for

non-programmers (e.g., graphics experts) that participate in the

development. Third, it is useful during testing activities, as it allows

developers to attach/detach objects.

Animation speed depends on the frame rate. There is a

general agreement (91% of positive answers) in this case. At the

same time, respondents indicate that not only Time.deltaTime

should be used to scale transforms and make them frame rate-

independent but, also, to perform transforms inside FixedUpdate()

instead of Update(). While Update() is executed once per frame,

FixedUpdate() execution frequency depends on the frame rate

and, for this reason, would not look faster or slower.

Fig. 4 shows, again in the form of diverging stacked bar charts, re-

sults related to the perceived usefulness of UnityLinter, and whether

the respondent would use it if available as a tool. 64% of the respon-

dents agreed about the usefulness of a UnityLinter, while only 51%

indicated that they would use it if available as a tool.We conjectured

that responses to these answers could depend on the respondents’

development experience (general and, in particular, with Unity).

We checked this relationship using permutation tests [16] (non-

parametric alternative to the Analysis of Variance), and we found

no significant results, i.e., the user perception of UnityLinter’s use-

fulness, and the willingness to adopt it as a tool do not depend on

the developers’ experience.

Finally, respondents provided some suggestions for further smell

detection. These include:

(1) Analysis of naming conventions. Note that, within proper

limits, this is available for language like Java (e.g.,with Check-

Style) and in general a lot of research on this topic has been

carried out [12, 31].

(2) User interface-related smells.

(3) Lack of caching when using GetComponent().

(4) Empty methods in MonoBehaviour classes (generated by the

IDE) that cause unnecessary delays.

Interestingly, respondents also pointed out how many of the

Unity tutorials contain smells among the ones we suggest and, in

general, code respondents believe to be smelly.

While suggestions (1) and (2) are out of scope for this work, we

followed up on suggestion (3) accounting for it when implementing

the Getting a GameObject reference finding it by name, and (4) by

implementing a seventh smell detector, i.e., A MonoBehaviour class

contains empty methods.

RQ1 Summary: Developers generally agree about the useful-

ness of defecting performance-related issues, although they

point out that only the excessive use of such practice might

produce visible problems. Maintainability issues are less of a

concern when the price to pay is reduced performance.

5 UNITY LINTER - ARCHITECTURE AND
IMPLEMENTATION

In this section we describe UnityLinter, a static analysis tool able

to recognize 7 Unity smells, i.e., the 6 described in Section 3, plus

the A MonoBehaviour class contains empty methods.

UnityLinter has been developed as Python scripts, which takes

as input a Unity project and, before detecting smells, extracts three

pieces of information:

(1) A parse tree of C# files using the srcML tool [21].

(2) A call graph using Doxygen [30]. Doxygen generates docu-

mentation starting from the source code. For this purpose,

it is able to extract call graphs, inheritance diagrams, and

collaboration diagrams.

(3) Data flow information using srcSlice [13, 39].

After having extracted the parse tree, call graph, and data flow,

we leverage them to identify the smells, using the rules described

in the following.

5.1 Detection Rules

This section aims to detail the detection rules defined for each smell.

Allocating and destroying GameObjects in updates.: to detect

this smell UnityLinter leverages the call graph extracted byDoxygen.

Basically, we search for the presence of Instantiate and Destroy

invocations either in Update()methods, or in methods transitively

called by Update(), according to the Doxygen call graph.

Getting a GameObject reference finding it by name: the de-

tection of this smell is relatively straight-forward and similar to

the previous one, in that we look for the presence of Find-related

invocations in Update() methods, or in methods reachable from

Update(). Based also on the feedback we received in the survey

of Section 4, the invocations we match are Find, FindWithTag,

FindGameObjectWithTag, and GetComponent.

Coupling objects through the IDE Inspector: we analyze parse

trees produced by srcML, identifying the presence of public

or [SerializeField] fields of type GameObjects or other non-

primitive types. These represent fields where the developer typ-

ically drags GameObjects to create static couplings. We discard

primitive type fields because these are typically used to set con-

stants and other properties through the Unity Inspector. Then, to

check whether a script is, indeed linked to a scene (i.e., in any of

its GameObjects), UnityLinter retrieves its identifier (guid) in its

metadata file generated by Unity. Then, it checks whether the guid

is in any scene metadata.

Heavyweight Update methods: statically-identifying

computationally-intensive methods is particularly challeng-

ing, as this task is often performed through a profiler (Unity

provides a quite thorough profiling infrastructure). Nevertheless,

it can be useful to early warn developers while writing source

code. To this aim, we look for symptoms of potential heavyweight

203



Update() methods. More specifically, we look for three different

kinds of symptoms: (i) a high degree of nesting in loops; (ii) an

excessive number of method calls; and (iii) the presence of Unity

API invocations known to be particularly expensive.

For the first two cases, a threshold should be set. While a devel-

oper could choose herself how to calibrate such thresholds, the ap-

proach we follow to set thresholds in our analyses (and in the study

reported in Section 6) is to consider as heavyweight all Update()

methods having loop level of nesting or number of method calls

exceeding the third quartile of all Update() methods in the project.

In the absence of historical data, one could set these thresholds

based on previous experience or data from other projects.

For the third case, we consider expensive APIs documented in

Unity-related forums [6]. In the current implementation, the consid-

ered APIs are related to the Camera.main access, and to messaging,

i.e.,SendMessage and BroadcastMessage.

A MonoBehaviour class contains empty methods: we imple-

ment this smell by simply checking for the presence of empty Start()

and Update() methods in MonoBehaviour classes.

Lack of separation of concerns: this smell could be related to

several aspects of software development and, in our context, of

Unity development. While one possibility could have been to lever-

age traditional approaches aimed at computing lack of cohesion (for

example, by computing the conceptual cohesion metric [36]), we

found that this would not work properly in our case. For example,

a method could contain an invocation to an object transform and

another one changing the object state or accessing a controller.

Therefore, we opted for implementing a very specific case of detec-

tor able to identify MonoBehaviour scripts containing both access

to GameObject.transform and to the Input class, i.e., the one re-

sponsible for handling input controllers.

Animation speed depends on the frame rate: this smell occurs

when the magnitude of a GameObject transform is not scaled using

Time.deltaTime, i.e., when it does not account for the frame rate.

A simple detection could check the presence of Time.deltaTime in

transform operation parameters. However, the transform could also

get other variables defined as a function Time.deltaTime. To this

aim, we leverage srcSlice to check for the presence of def-use chains

between variable definitions and transform calls. If a transform call

does not contain any Time.deltaTime reference, nor (transitively)

uses variables defined on Time.deltaTime, then we highlight the

smell.

5.2 Limitations

The current implementation of UnityLinter suffers of some limita-

tions, that could be addressed in future work:

(1) Limited set of smells covered: as discussed in Section 3, in this

first work on video game smell detection we did not consider

all possible smells. This would require a systematic analysis

of literature and developers’ discussion, and can be subject

of future work.

(2) Lightweight and approximate detection of heavyweight meth-

ods: as discussed above, static analysis is not particularly

suitable to identify computationally-intensive methods. We

mitigated this limitation trying to identify from forums what

are (some) expensive Unity APIs, and detect their usage in

Update methods. Future work should target an accurate (dy-

namic) profiling of the Unity framework.

(3) Very specific detection of Lack of separation of concerns: as

explained above, we cope with one specific case of lack of

separation of concern (mix up of input controller and trans-

form in the same script). Clearly, this is not the only case of

interest, and in future, further cases could be handled.

(4) Imprecise call graph construction and data flow analysis: Doxy-

gen is not a tool explicitly designed for precise construction

of call graphs (it is more a lightweight tool conceived for

documentation analysis). Also, srcSlice performs a very light-

weight data flow analysis. However, to the best of our knowl-

edge, these are the only tools available to analyze C# source

code. In general, we believe a lightweight analysis is accept-

able for SCATs, which should only provide suggestions of

candidate smells to developers.

6 STUDY ON UNITYLINTER ACCURACY AND
SMELL DIFFUSENESS

After having collected feedback from potential users of UnityLinter,

and having benefited from such feedback to refine the detector,

we need to evaluate its accuracy. While it might be acceptable for

a linter to perform a lightweight, somewhat imprecise analysis,

having too many false negatives or false positives would result in a

tool useless for developers. Therefore, we ask our second research

question:

RQ2: How accurate is UnityLinter in detecting the con-

sidered bad smells?

Finally, within the limits of UnityLinter’s accuracy, we need to

investigate whether the considered smells are actually present in

existing games. This is because if a smell is extremely rare (i.e.,

it rarely happens) then it may not be worthwhile to invest effort

on developing approaches for handling it. At the same time, also

a smell being extremely frequent might pose questions, i.e., the

considered symptom is a widely-adopted development practice, and

therefore in such a circumstance the smell detector would produce

an excessive number of warnings. Our third research question is:

RQ3: What is the diffuseness of the considered bad

smells?

6.1 Study Methodology

We apply UnityLinter on a set of projects, to (i) validate its accu-

racy, and (ii) study the magnitude of the investigated smells. To this

purpose, we considered 100 Unity game projects. We have down-

loaded them from GitHub choosing only the projects which have

the sentence “Game in Unity” in their description. We have selected

the first 100 largest ones (considering the overall repository size).

To addressRQ2, we perform a manual evaluation of the detected

smells. As for the precision, we extracted a stratified random sam-

ple of 359 smells among the 5,461 detected one, where strata are

computed based on the proportions of different smell types. This

sample ensures a ±5% margin of error with a confidence level of

95%. Since one smell (Getting a GameObject reference finding it by

name) has a fairly limited number of instances (61), hence reaching

a number of 420 smells to be manually analyzed in total.

204



Table 2: Performance evaluation: Precision.

Smells Analyzed TP FP Prec.

Allocating and destroying GameObjects in updates 11 11 0 100%

Coupling objects through the IDE Inspector 258 246 12 95%

Heavyweight Update methods 28 14 4 86%

Getting a GameObject reference finding it by name 61 61 0 100%

A MonoBehaviour class contains empty methods 25 25 0 100%

Lack of separation of concerns 26 26 0 100%

Animation speed depends on the frame rate 11 10 1 91%

The analysis has been performed by two authors, knowledgeable

of Unity, that were not involved in the development of UnityLinter

(to avoid bias). During a first phase, a set of 20 smell instances (of

different types) were jointly coded, and then they completed the

task independently, with an agreement of 0.94 and a Cohen’s k
inter-rater agreement [20] of 0.45, which is a moderate agreement

(note that such an agreement is not particularly high because if the

very high percentage, 92% of cases where both raters agreed with a

true positive case). Finally, They discussed and resolved inconsistent

assessments.

Assessing the recall on all 100 projects was not feasible. Instead,

the two assessors manually inspected five complete projects (ran-

domly chosen among the 100) to identify possible smells, reach-

ing a moderate Cohen’s k inter-rater agreement (0.48). Finally,

they resolved inconsistent evaluations, and compared their results

with those of UnityLinter. The analyzed GitHub repositories are:

ArtemSobolevPI-53/3D-Racing-Game-in-Unity, pchen4South/unity-

jam, smcguire56/GestureBasedUIProject, zanval/MiniLD62, and B-e-

n-j-a-m-i-n-S-a-v-a-g-e_Simple-VR-Game-in-Unity.

As outcome of the validation, we report, for each smell type, the

achieved precision and recall. Also, we discuss the reasons for false

positives and negatives.

To address RQ3 we report, for each smell type: (i) the number of

detected instances across all the studied projects, (ii) the percentage

of affected projects and (iii) the percentage of affected source code

files. We also discuss some exemplar cases of detected smells.

6.2 RQ2 results: UnityLinter accuracy

Table 2 reports the precision, for different smell types, achieved on

the manually analyzed instances. As the table shows, the precision

ranges between 86% of Heavyweight Update methods and 100%

reached by different smell types, i.e., Allocating and destroying

GameObjects in updates, Getting a GameObject reference finding

it by name, A MonoBehaviour class contains empty methods and

Lack of separation of concerns. The different levels of precision can

be explained by how UnityLinter identifies the different bad smell

types.

The main source of imprecision for Animation speed depends

on the frame rate is due to the data flow analysis of srcSlice. As ex-

plained in Section 5.1, the smell detection is based on presence of a

def-use chain between a variable assigned to Time.deltaTime and

a transform operation. As for the Heavyweight Update methods,

as explained in Section 5.2, UnityLinter is only able to provide a

very rough approximation. It turns out that several cases in which

a method performs a large number of invocations do not repre-

sent a serious concern, because the invoked methods are relatively

inexpensive to execute. Finally, the false positives for Coupling

Table 3: Performance evaluation: Recall.

Smells Analyzed TP FN Rec.

Allocating and destroying GameObjects in updates 11 7 4 64%

Coupling objects through the IDE Inspector 421 266 155 63%

Heavyweight Update methods 27 19 8 70%

Getting a GameObject reference finding it by name 5 4 1 80%

A MonoBehaviour class contains empty methods 12 12 0 100%

Lack of separation of concerns 28 14 14 50%

Animation speed depends on the frame rate 21 8 13 38%

Table 4: Diffuseness of the detected smells.

Smells
# Total # Affected

Min Med Max
Instances Projects

Allocating and destroying GameObjects in updates 167 51 0 1 15

Coupling objects through the IDE Inspector 3910 97 0 25 352

Heavyweight Update methods 412 86 0 3 30

Getting a GameObject reference finding it by name 61 39 0 0 8

A MonoBehaviour class contains empty methods 366 81 0 3 52

Lack of separation of concerns 385 66 0 3 20

Animation speed depends on the frame rate 161 57 0 1 12

objects through the IDE Inspector are related to MonoBehaviour

scripts which contain public attributes, which however are not

linked to a GameObject through the IDE, but dynamically, using a

GetComponent method.

As for the recall, results from the five manually-inspected

projects are shown in Table 3. The recall ranges between 50% of

Lack of separation of concerns and 100% of A MonoBehaviour class

contains empty methods. Lack of separation of concerns mostly

misses cases of GameObject transformations not contemplated in

our rules, which, in the future, need to be extended because of a

plethora of available GameObject transformation APIs available

in Unity. A MonoBehaviour class contains empty methods is very

straight-forward to detect, and this explains the 100% recall.

For Animation speed depends on the frame rate, false negatives

are due to limitations in the data flow analysis performed by srcSlice,

which is currently the only available data flow analyzer for C#. To

improve UnityLinter, we may need to develop, in future, our own

data flow analyzer.

For Allocating and destroying GameObjects in updates and Get-

ting a GameObject reference finding it by name, false negatives

are due to Doxygen, which partially reconstructed the call graph

chains. Also, in this case, only a better call graph analyzer could

improve the recall of UnityLinter.

As for Coupling objects through the IDE Inspector, false nega-

tives are related to public field declarations that the C# parser could

not properly identify.

RQ2 Summary: UnityLinter precision ranges between 86%

and 100%, whereas recall between 50% and 100%. Sources of

imprecision and limited recall are due to the approximate data

flow analysis, and other heuristics of a lightweight analysis.

6.3 RQ3 results: Smells’ diffuseness.

Table 4 reports the diffuseness of the studied smell types across the

100 analyzed projects. Clearly, this data must be interpreted keeping

into account the precision and recall of UnityLinter, discussed in

RQ2.

205



As the table shows, the largest number of smell instances (and

the largest proportion of affected projects) occur for Coupling ob-

jects through the IDE Inspector: 97% of the analyzed projects are

affected by this smell. This is unsurprising, based on the results of

RQ1. Indeed, many developers consider this practice, i.e., creating

coupling through the inspector, as a useful (and in general harmless)

development practice.

86% of the analyzed projects are affected by Heavyweight Update

methods. Truly, as we explained in Section 5, a linter like UnityLin-

ter (but the same can be said of other tools such as FindBugs [5] or

Android Lint [2]) could only highlight potential problems in such

cases. Only a dynamic analysis and profiling may reveal whether

or not these represent actual cases of performance problems.

About Lack of separation of concerns, despite UnityLinter has a

fairly limited recall, we still found 366 cases (and 66% of the projects)

in which developers mix up direct access to input controllers with

other operations such as access to transforms. Fortunately, Unity

has recently released a new input management mechanism [9]

which would help to make the source code cleaner.

The least common smell is Getting a GameObject reference find-

ing it by name: it affects 39% of the analyzed projects. On the one

hand, as per RQ1 results, this smell is known and well-perceived by

developers. At the same time, the high usage of coupling through

the Inspector reduces the use of Find operations. Other smells with

a relatively low perception are Allocating and destroying GameOb-

jects in updates (51% of the analyzed projects affected). As also

indicated in feedback obtained in the RQ1 survey, when objects

need to be created and released with a high frequency, developers

use an object pool. As per Animation speed depends on the frame

rate (57% of projects affected) developers properly scale transforms

using Time.deltaTime, or use FixedUpdate().

Finally, only 66% of the projects are affected byAMonoBehaviour

class contains empty methods. As previously explained, this smell

occurs when developers do not delete empty method templates

automatically generated by the IDE.

RQ3 Summary: The studied smell types affect a proportion of

projects ranging between 39% and 97%. While Coupling objects

through the IDE Inspector is highly diffused (but also consid-

ered as an acceptable development practice), smells such as

Getting a GameObject reference finding it by name, Allocat-

ing and destroying GameObjects in updates, and Animation

speed depends on the frame rate are more acknowledged by

developers and also occur in fewer projects.

7 THREATS TO VALIDITY

Threats to construct validity concern the relationship between the-

ory and observation. Such threats may affect RQ1 because we asked

developers to provide their perceived importance of smells given a

short description of the problem. To mitigate this threat, we pro-

vided some explanatory examples. Also, no respondent indicated

issues about possible misunderstanding in the questions. Another

threat can be related to the assessment of heavyweight Update()

methods, because, as explained in Section 5, UnityLinter provides

a very lightweight estimate. Finally, a threat could be due to mis-

takes in the implementation of UnityLinter. While we could not

exclude such mistakes, we carefully tested it on several video game

examples before conducting the study.

Threats to internal validity concern factors internal to our study

that could influence our results. Primarily, such threats can be due

to the manual assessment of precision and recall, which could suffer

from subjectiveness and incompleteness. We mitigated the former

by conducting an initial validation phase with multiple annota-

tors analyzing smell instances in pairs and discussing them. The

incompleteness was mitigated by letting two independent annota-

tors assessing the recall, and then comparing and discussing their

results. Also, as explained in Section 5.2, UnityLinter suffers from

the imprecision of srcSlice and Doxygen.

Threats to external validity concern the generalization of our

findings. First, the set of detected smells is surely incomplete. A

specific study is needed to thoroughly investigate a broad set of

smells that can affect video games. Our work, instead, represents a

first attempt to define some smells and provide detectors for them.

Second, some smells (e.g., Lack of separation of concerns) have been

defined for very specific cases and can be extended in future work.

Finally, our study involved the analysis of open source games. It

is of paramount importance to extend the study to further video

games (including commercial ones) that can be more representative

of the market.

8 RELATEDWORK

This section discusses related work about (i) design principles in

video games, and (ii) empirical studies on video game development.

8.1 Design principles in video game
development

Different authors have studied how to apply design principles in the

context of video game development [14, 17, 23, 29, 38, 40, 44], either

by defining specific patterns, or by applying GoF design patterns

(DPs) [26] in the context of video game development.

Nystrom [40] proposes a revisited version of some GoF DPs

(namely command, flyweight, observer, prototype, singleton, and

state), and a set of specific DPs for the video game domain. In par-

ticular, Nystrom defines thirteen design patterns grouped into four

categories: sequencing patterns (related to time issues), behavioral

patterns (to define and refine several behaviors in a way they are

easy to maintain), decoupling patterns, and optimization patterns

(to speed up a game).

The bad smells we have defined and identified are related to the

Nystrom’s DPs. For instance, Allocating and destroying GameOb-

jects in updates is related to Nystrom’s optimization patterns, while

Heavyweight Update methods and Animation speed depends on the

frame rate are related to both sequencing and optimization cate-

gories. The Getting a GameObject reference finding it by name is

related to optimization and decoupling patterns, while Coupling

objects through the IDE Inspector is related to the decoupling pat-

terns, and the Lack of separation of concerns related to behavioral

patterns.

The book by Murray [38] also proposes various kinds of design

solutions for Unity video games, including the use of object pools

or virtual controllers.

206



Barakat et al. [17] propose to integrate creational and behavioral

DPs (namely state, strategy, prototype, and observer) with a specific

game design framework to provide the developers with some hints

on what DP to use with the main game aspects. Such an integration

would make easier reuse and maintenance tasks.

Ampatzoglou et al. [15] studied the correlation between design

pattern application, software defects, and debugging rate in 97 Java

open source games. Even if the overall number of design pattern

instances does not correlate with defect frequency and debugging

effectiveness, some specific design patterns appeared to have a

significant impact on the number of reported bugs and debugging

rate.

Ampatzoglou et al. [14] studied the impact of DPs on the main-

tainability of two open-source games. Their result indicated that

DPs help to increase maintainability, while increasing the project

size. Also, Ampatzoglou et al. [29] leveraged DPs to implement

game rules and logic. They show that the use of DPs in this context

helps to avoid introducing undesired complexity, and to increase

reusability, maintainability and flexibility. Figueiredo et al. [23]

conducted an experiment that showed the positive impact of GoF

patterns in video game development. Other work reported design

experiences in the context of video game development. Qu et al.

[44] reported an experience of application of DPs to solve a number

of problems in video game development, including sprite and map

management, or handling the game state.

While several papers and books can be found in the literature

about best practices to use in gaming development to improve

their quality, no work is, at the best of authors’ knowledge, about

bad smells in video games, i.e., how and how much suggested best

practices are not applied in game development. The only tool related

to our work is Rider [8], a commercial IDE for Unity development

which highlights the use of expensive Unity APIs. Our catalog goes

beyond that because it features different kinds of smells.

8.2 Empirical studies on video game
development

Some studies have focused on the video game development process.

Stacy and Nandhakumar [46] conducted an interview-based study,

and found that developers perceive video game development dif-

ferent from traditional software development. Murphy-Hill et al.

[37] studied, through a combination of interviews and surveys, the

video game development process in Microsoft. They highlighted

substantial differences with the development of traditional appli-

cations, including less requirement engineering and design, fairly

limited reuse, and a completely different approach to testing. Pas-

carella et al. [42] conducted a similar study (from a quantitative

point of view) in the open-source, analyzing the typical changes oc-

curring in video games, the fault distribution, and the programmers’

perception of the video game development process.

Petrillo et al. [43] studied the typical problems that occur during

video game development. These are mainly related to the planning

and include unrealistic features, optimistic schedules, and exceeding

the planned budget. Other studies have investigated the types of

bugs that occur in video games. In particular, Lewis et al. [32] has

proposed a hierarchical taxonomy of faults occurring in video game

projects.

Our work looks video game development from a different per-

spective (i.e., product vs. process) than the previous work. While

the aforementioned studies are related to understanding the nature

of bugs in video game development, our work (and the RQ1 survey

in particular) indicates that, besides traditional bugs, performance

issues and to some extent maintainability issues are particularly

relevant in video games development. In this scenario, an early

discovery of problems through specialized linters can be therefore

beneficial.

Other studies have focused on mining video game data to gather

information about the development process. Lin et al. have stud-

ied the evolution of video games by mining data from the Steam

platform [33–35]. In particular, they investigated the reviewing

mechanism in games [35], where the number of played hours is

considered as an important factor to determine the usefulness of a

review. Another mechanism for collecting feedback is represented

by early-access games [34]. Finally, they studied the presence of

"zero-day" updates in video games [33] correlating them with the

overall update frequency. Work on static analysis and mining run-

time data are largely complementary to achieve an effective and

efficient video game development process.

9 CONCLUSION

This paper described UnityLinter, a static analyzer capable of iden-

tifying 7 types of bad smells in Unity projects. Such smells cover

various aspects of video game development, including performance

issues (e.g., use of Instantiate and Destroy in Update() meth-

ods without relying on object pools), maintainability issues (e.g.,

mix-up of input handling and GameObject transforms in the same

script), and behavioral issues (inappropriate scaling of transforms

with respect to frame rate).

We first assessed the relevance of the smells through a survey

with 68 participants. Results indicate that performance smells are

generally more perceived than maintainability smells, and some

smells such as Coupling objects through the IDE Inspector are con-

sidered as an acceptable practice. Then, we assessed the UnityLinter

precision and recall, which, on the analyzed samples, vary in the

range [89%-100%] and [50%-100%] respectively. Finally, we reported

and discussed the diffuseness of Unity smells on 100 open source

video games, showing how the studied smells practice affect a rela-

tively large proportion of the analyzed projects, i.e., between 39%

and 97%.

There are several directions for future work, mostly focused

towards improving approach, also based on the collected informa-

tion from our first evaluation. First, we plan to use better code

analyzers or heuristics to improve UnityLinter accuracy. Indeed,

many sources of imprecision and limited recall are due to the use

of lightweight data flow and call graph analysis.

Second, we plan to detect a large variety of smells, and to better

generalize some of the already detected smells, such as Lack of

separation of concerns, but also refine others such as Heavyweight

Updatemethods, for whichwe plan to perform an empirical analysis

of the performance of a broad set of Unity APIs. Finally, we plan

to conduct an in-field evaluation, to determine the extent to which

the use of UnityLinter would actually help developers.

207



REFERENCES
[1] [n. d.]. A Ruby static code analyzer and formatter. https://github.com/rubocop-hq/

rubocop (Last access: 01/01/2020). ([n. d.]).
[2] [n. d.]. Android Lint. https://developer.android.com/studio/write/lint (Last access:

01/01/2020). ([n. d.]).
[3] [n. d.]. Blender. http://unity3d.com/unity/ (Last access: 01/01/2020). ([n. d.]).
[4] [n. d.]. CheckStyle. http://checkstyle.sourceforge.net/ (Last access: 01/01/2020).

([n. d.]).
[5] [n. d.]. FindBugs. http://findbugs.sourceforge.net/ (Last access: 01/01/2020). ([n.

d.]).
[6] [n. d.]. Performance recommendations for Unity https://docs.microsoft.com/

en-us/windows/mixed-reality/performance-recommendations-for-unity (Last
access: 01/01/2020) . ([n. d.]).

[7] [n. d.]. PMD. https://pmd.github.io/ (Last access: 01/01/2020). ([n. d.]).
[8] [n. d.]. Rider for Unity. https://www.jetbrains.com/dotnet/promo/unity/ (Last

access: 01/01/2020) . ([n. d.]).
[9] [n. d.]. Unity - Introducing the new Input System. https://blogs.unity3d.com/

2019/10/14/introducing-the-new-input-system/ (Last access: 01/01/2020) . ([n.
d.]).

[10] [n. d.]. Unity. http://unity3d.com/unity/ (Last access: 01/01/2020). ([n. d.]).
[11] [n. d.]. Unreal Engine. https://www.unrealengine.com/en-US/ (Last access:

01/01/2020). ([n. d.]).
[12] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2015.

Suggesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015. 38–49.

[13] Hakam W Alomari, Michael L Collard, Jonathan I Maletic, Nouh Alhindawi, and
Omar Meqdadi. 2014. srcSlice: very efficient and scalable forward static slicing.
Journal of Software: Evolution and Process 26, 11 (2014), 931–961.

[14] Apostolos Ampatzoglou and Alexander Chatzigeorgiou. 2007. Evaluation of
object-oriented design patterns in game development*Department of Applied
Informatics. Information and Software Technology, vol. 49, pp, 445ñ454 (2007).

[15] A. Ampatzoglou, A. Kritikos, E. M. Arvanitou, A. Gortzis, F. Chatziasimidis, and
I. Stamelos. 2011. An Empirical Investigation on the Impact of Design Pattern
Application on Computer Game Defects. In Proceedings of 15th International
Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek
2011, Tampere, Finland, 2011).

[16] Rose D. Baker. 1995. Modern permutation test software. In Randomization Tests.
Marcel Decker.

[17] Nahla H. Barakat. 2019. A Framework for integrating software design patterns
with game design framework. In Proceedings the 2019 8th International Conference
on Software and Information Engineering, ICSIE 2019, Cairo, Egypt, April 09 - 12,
2019.

[18] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In 2016 IEEE 23rd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), Vol. 1. IEEE, 470–481.

[19] Antonio Borrelli, Vittoria Nardone, Giuseppe Di Lucca, Gerardo Canfora, and
Massimiliano Di Penta. 2020. Detecting Video Game-Specific Bad Smells in
Unity Projects - Dataset https://tinyurl.com/UnitySmells https://tinyurl.com/
UnitySmells,. (2020).

[20] J Cohen. 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas.
(1960).

[21] Michael L. Collard, Huzefa H. Kagdi, and Jonathan I. Maletic. 2003. An XML-
Based Lightweight C++ Fact Extractor. In 11th International Workshop on Program
Comprehension (IWPC 2003), May 10-11, 2003, Portland, Oregon, USA. 134–143.

[22] David E. Evans. 1996. Static Detection of Dynamic Memory Errors. In Proceed-
ings of the ACM SIGPLAN’96 Conference on Programming Language Design and
Implementation (PLDI), Philadephia, Pennsylvania, USA, May 21-24, 1996. 44–53.
https://doi.org/10.1145/231379.231389

[23] Roberto Tenorio Figueiredo andGeber Lisboa Ramalho. 2016. GOF design patterns
applied to the Development of Digital Games. In Proceedings of SBGames 2015,
November 11th - 13th, 2015, Teresina, Brazil.

[24] Forbes. [n. d.]. The Business Of Video Games: Market Share For Gaming
Platforms in 2019. https://www.forbes.com/sites/kevinanderton/2019/06/26/
the-business-of-video-games-market-share- for-gaming-platforms-in-2019-
infographic/#66ce258b7b25 (Last access: 01/01/2020). ([n. d.]).

[25] GameIndustry.biz. [n. d.]. Global games market value ris-
ing to $134.9bn in 2018. https://www.gamesindustry.biz/articles/
2018-12-18-global-games-market-value-rose-to-usd134-9bn-in-2018 (Last
access: 01/01/2020). ([n. d.]).

[26] E. Gamma, R. Helm, R.Johnson, and J. Vlissides. 1995. Design Patterns: Elements
of Reusable Object Oriented Software. Addison-Wesley.

[27] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
Software Engineering (ICSE), 2013 35th International Conference on. IEEE.

[28] S. C. Johnson. 1978. Lint, a C Program Checker. In Comp. Sci. Tech. Rep. 78–1273.
[29] Xeni-Christina Kounoukla, Apostolos Ampatzoglou, and Konstantinos Anag-

nostopoulos. 2016. Implementing Game Mechanics with GoF Design Patterns.
In Proceedings of the 20th Pan-Hellenic Conference on Informatics, PCI-16, Patras,
Greece, Nov. 10-12, 2016, ACM, New York, NY, USA.

[30] Robert S Laramee. 2011. Bob’s Concise Introduction to Doxygen. Technical Report.
Technical report, The Visual and Interactive Computing Group, Computer.

[31] Surafel Lemma Abebe and Paolo Tonella. 2013. Automated Identifier Completion
and Replacement. In 17th European Conference on Software Maintenance and
Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013. 263–272.

[32] Chris Lewis, JimWhitehead, and NoahWardrip-Fruin. 2010. What went wrong: a
taxonomy of video game bugs. In Proceedings of the fifth international conference
on the foundations of digital games. ACM, 108–115.

[33] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2017. Studying the urgent
updates of popular games on the Steam platform. Empirical Software Engineering
22, 4 (2017), 2095–2126.

[34] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2018. An empirical study of
early access games on the Steam platform. Empirical Software Engineering 23, 2
(2018), 771–799.

[35] Dayi Lin, Cor-Paul Bezemer, Ying Zou, and Ahmed E. Hassan. 2019. An empirical
study of game reviews on the Steam platform. Empirical Software Engineering 24,
1 (2019), 170–207.

[36] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. 2008. Using the Concep-
tual Cohesion of Classes for Fault Prediction in Object-Oriented Systems. IEEE
Trans. Software Eng. 34, 2 (2008), 287–300.

[37] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. 2014.
Cowboys, ankle sprains, and keepers of quality: How is video game development
different from software development?. In Proceedings of the 36th International
Conference on Software Engineering. ACM, 1–11.

[38] Jeff W. Murray. 2014. C# Game Programming Cookbook for Unity 3D. CRC Press,
New York.

[39] Christian D Newman, Tessandra Sage, Michael L Collard, Hakam W Alomari,
and Jonathan I Maletic. 2016. srcSlice: a tool for efficient static forward slicing. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 621–624.

[40] R Nystrom. 2014. Game Programming Patterns (1st edition ed.). Lightning Source
Inc.

[41] A. N. Oppenheim. 1992. Questionnaire Design, Interviewing and Attitude Measure-
ment. Pinter Publishers.

[42] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development
in open source?. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. 392–402.

[43] Fábio Petrillo, Marcelo Soares Pimenta, Francisco M. Trindade, and Carlos Di-
etrich. 2009. What went wrong? A survey of problems in game development.
Computers in Entertainment 7, 1 (2009), 13:1–13:22.

[44] Junfeng Qu, Yinglei Song, and Yong Wei. 2013. Applying Design Patterns in
Game Programming. In Proceedings of The International Conference on Software
Engineering Research and Practice 2013, (SERP2013), CSREA Press.

[45] Jaime Spacco, David Hovemeyer, and William Pugh. 2006. Tracking defect
warnings across versions. In Proceedings of the 2006 international workshop on
Mining software repositories. ACM, 133–136.

[46] Patrick Stacey and Joe Nandhakumar. 2009. A temporal perspective of the
computer game development process. Information Systems Journal 19, 5 (2009),
479–497.

[47] Mario Linares Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining energy-greedy API
usage patterns in Android apps: an empirical study. In 11th Working Conference
on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014,
Hyderabad, India. ACM, 2–11.

[48] Fadi Wedyan, Dalal Alrmuny, and James M Bieman. 2009. The effectiveness of
automated static analysis tools for fault detection and refactoring prediction. In
2009 International Conference on Software Testing Verification and Validation. IEEE,
141–150.

[49] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In Proceedings of the 14th International
Conference on Mining Software Repositories, MSR 2017, Buenos Aires, Argentina,
May 20-28, 2017. 334–344.

[50] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P Hude-
pohl, and Mladen A Vouk. 2006. On the value of static analysis for fault detection
in software. IEEE transactions on software engineering 32, 4 (2006), 240–253.

208


