Values and Types

Types of values

Type equivalence, compatibility, & inference

Main ideas

- A type is a set of values, equipped with one or more operations that can be applied uniformly to all those values
- Inclusion of data types in a language definition supports:
 - readability, writability, and portability
- A type system includes
 - Type inference rules to infer an object's data type from the available information
 - A type equivalence algorithm for determining whether two objects are of the same type

Types

- A type is a set of values, equipped with one or more operations that can be applied uniformly to all those values
- How to categorize values
 - Primitive
 - Composite
 - Pointers
 - References
 - Functions/procedures
- Different PLs support different types of values. Why?

Primitive types

- A **primitive type** is one whose values can't be decomposed into simpler values.
- Typically supported directly by the hardware implications for
 - Efficiency
 - Storage
- Includes:
 - Boolean
 - Character
 - String
 - Integer
 - Float
 - Numeric data type ranges
- Names of types vary from one PL to another; not significant

Boolean

- Boolean = {false, true}
- Not always a built-in type

```
    Ex in C: 0 = false, non-zero = true
    x = 5;
    while (x--) printf("x is %d", x);
```

- Storage
 - Only need 1 bit, but...
 - Memory addresses are larger than that
- Operations: support short-circuiting?

Integers and floats

- Integer = {..., -2, -1, 0, 1, 2, ... }
- Float = {... -1.0, ..., 0.0, ..., 1.0 ... }
- Implementation issues:
 - Different types for different sizes
 - Internal representation: 2's complement, IEEE 754
 - Range is hardware dependent, but language must help determine upper/lower bounds
 - Roundoff
- Reals: fixed point vs. floating point support
 - Fixed point has fixed number of digits after decimal
 - Floating point, decimal can 'float' relative to significant digits

Defined numeric data types

- Subrange type: a contiguous subset of a simple type
 - Base type: the type of elements in the subrange
 - In Ada and Pascal we can define new numeric types by specifying a range Ex in Ada: type Population is range 0 ... 1e10;
- Many languages support defining new enumeration types by listing their explicit values (called enumerands)
 - Underlying representation usually mapped to integers
 - Exin Ada: type Color is (red, green, blue);

Characters and strings

- Character = {... 'A', ..., 'Z', ..., '0', ..., '9', ... }
- Some languages support a character-string type
 - Ex: ML, Prolog, Java
- Others support a character type with strings stored explicitly as an array of characters
 - Ex: C, Pascal, Ada
- Issues:
 - Allowable character set and collating sequence (order of characters)
 - Ex: EBCDIC, ASCII, ISO-Latin, Unicode
 - Ex: EBCDIC has lower case < upper case < numbers
 - Ex: ASCII has numbers < upper case < lower case
 - Representation
 - Null terminated complicates size (Ex: C string)
 - Limit on string size with length field

Pointers (?)

- Language support features
 - Null value
 - Allocation & deallocation operations
 - Implications for underlying memory management support
 - Dereferencing
- Issues
 - What can a pointer point to?
 - Restricted by type? int x, *iptr = &x;
 - Type compatibility issues?
 - "Generic" pointer? void *genericPtr;
 - Dangling pointer problem: a pointer that points to storage that has been deallocated

Composite types (data structures)

- Use type constructors to define new data structures
- Attributes of specifying data structures:
 - Number of components
 - Is there an upper bound?
 - Can the number change or is it fixed statically?
 - Type of each component
 - Homogenous (components are the same)
 - Heterogenous (components differ)
 - Component selection mechanism
 - Whole or part access?
 - Component organization
 - Composite type allocation and deallocation

Composites: structures (records)

- Defined with type constructors
- Can be understood in terms of cartesian products
- For example, in C:

```
struct myRec {
   type1 a;
   type2 b;
   type3 c;
};
```

Domain(myRec) = Domain(type1) x Domain(type2) x Domain(type3)

```
struct myRec theStruct, rec2; // initialization allowed?
type1 n = theStruct.a;
rec2 = theStruct; // should this be allowed? More later!
```

Composites: unions (variant records)

- Can be understood in terms of disjoint union
- For example, in C:

```
union myVariant {
   type1 a;
   type2 b;
   type3 c;
}
```

Domain (myVariant) = Domain(type1) + Domain(type2) + Domain(type3)

• Space for the fields is **shared**

Composites: unions

- Discriminated union
 - Tag is attached to each field of the union
 - Can be checked at run time to determine the type stored in the union
- Undiscriminated union (or free union)
 - No tag
 - Program must provide other ways to ensure that values of the correct type are accessed
 - Possible to store a value of one type and inadvertently (or intentionally?) retrieve the "value" as another type

Example: Pascal Discriminated Union

```
type paytype = (salaried, hourly);
          var employee : record
            id : integer;
            dept : array [1..3] of char;
            age : integer;
            case payclass : paytype of
            salaried : (monthlyRate : real;
Type tag
                 startDate : integer);
            hourly : (ratePerHour : real;
                 regHours : integer;
                overtime : integer);
           end;
```

Mappings

 $m:S \rightarrow T$, m is a **mapping** from every value in S to every value in T

- Arrays (finite; ordered index set)
 - One or multi-dimensional
- Hashes (finite; unordered index set)
- In Pascal:

type Color = (red , green , blue) ;
Pixel = array (Color) of 0 . . 1;

- Functions (procedures)
 - Note: Ada uses the same notation for array accesses and function calls
- Sets? In Pascal:

```
type Color = ( red, green, blue );
Hue = set of Color;
```

Recursive types

- A recursive type is one defined in terms of itself
- Example: List
 - a sequence of 0 or more component values.
 - **length** = number of components.
 - empty list has no components.
 - A non-empty list consists of a **head** (its first component) and a **tail** (all but its first component).
- Type declaration for integer-lists in Haskell
 data IntList = Nil | Cons Int IntList

Type Equivalence

Determines when two types are "equivalent" for purposes of some operation

The problem of determining type equivalence raises two related ideas:

- What does it mean to say that two types are the "same"?
 - A data type issue
- What does it mean to say that two data objects of the same type are "equal"?
 - A semantic issue

Structural equivalence

- $T_1 \equiv T_2$ if and only if T_1 and T_2 are built in the same way using the same type constructors from the same simple types
- Some issues:
 - Must the names of the fields be the same or is it enough that the structures contain the same number and type of components?
 - Consider:

struct foo {	struct bar {	struct tip {
int a;	int c;	char d;
char b;	char d;	int c;
};	};	};

• Are foo and bar equivalent? How about tip?

Structural equivalence

- Structural equivalence does not mean that the two types *mean* the same thing.
- For example (Pascal): Is len + vol meaningful?

```
type
   Meters = integer;
   Liters = integer;
var
   len : Meters;
   vol : Liters;
   age : integer
```

Name Equivalence

- $T_1 \equiv T_2$ if and only if T_1 and T_2 were defined in the same place.
- Example: Which of f1, f2, b1, b2 are equivalent under name equivalence? Under structural equivalence?

```
typedef struct foo {
    int a;
    char b;
} foo_t;
typedef struct bar {
    int a;
    char b;
} bar_t;
foo_t f1, f2;
bar t b1, b2;
```

Name Equivalence

- $T_1 \equiv T_2$ if and only if T_1 and T_2 were defined in the same place.
- Example: Which of f1, f2, b1, b2 are equivalent under name equivalence? Under structural equivalence?

```
typedef struct foo {
    int a;
    char b;
} foo_t;
typedef struct bar {
    int a;
    char b;
} bar_t;
foo_t f1, f2;
bar t b1, b2;
```

under name equivalence:
f1, f2 are equivalent

b1, b2 are equivalent

under structural equivalence: f1, f2, b1, b2 are equivalent

Name Equivalence

• Anonymous types cannot be used. For example:

```
var x : array [1..10] of integer; /* Ex. 1 */
    y : array [1..10] of integer;
```

- Here the variables are names, but the types are not
- x and y are structurally equivalent, but not name equivalent
- A similar, but more ambiguous, problem occurs with

```
var x, y : array [1..10] of integer; /* Ex. 2 */
```

Ada solves this problem by saying that, in a case like this, it is as if we had used the separate definitions given above in Ex. 1, so the two variables are not type equivalent.

Declaration Equivalence

- Types that lead back to the **same original structure declaration** by a series of re-declarations are considered to be equivalent types.
- By this rule, x&y in Ex. 1 are *not* equivalent, but they are in Ex. 2.
- Example:

type t1 = array [1..10] of integer; t2 = t1; t3 = t2;

• Which are type equivalent under declaration equivalence? All of them

Example

```
type t1 = array [1..10] of integer;
    t2 = t1;
    t3 = array [1..10] of integer;
var x : t1;
    y : t2;
    z : t3;
    w,v : array [1..10] of integer;
```

There are *three* different types here: t1, t2, t3, and the unnamed type associated with w and v.

What is their equivalence under the three strategies?

Example

```
type t1 = array [1..10] of integer;
    t2 = t1;
    t3 = array [1..10] of integer;
var x : t1;
    y : t2;
    z : t3;
    w,v : array [1..10] of integer;
```

There are *three* different types here: t1, t2, t3, and the unnamed type associated with w and v.

What is their equivalence under the three strategies?

under structural equivalence: x,y,z,w,v are equivalent

under name equivalence:

w, v are possibly equivalent if we allow that they are defined for the same anonymous type (but most languages classify as separate types)

under declaration equivalence:

- x, y are equivalent
- w, v are equivalent

Type Compatibility

When can a value of one type be used in a context that expects another type?

- Where is this an issue?
 - Use of a value in some operation
 - Assigning a value to a variable
 - Passing a value as a parameter
- Primitives: create a type hierarchy based on principle "loss of information"
- Non-primitives?

Type Inference

What is the type of an expression, given the types of the operands and possibly the surrounding context?

An **expression** is a construct that will be evaluated to yield a value.

- Literals
- Variables and constants
- Conditionals
- Iterative expressions
- Function calls

Type Completeness Principle

- Type Completeness Principle: No operation should be arbitrarily restricted in the types of its operands
 - More special cases to learn creates more difficulty to program correctly
- First-class values
 - Can be stored arbitrarily into variables and constants
 - Can be passed into a function and returned from a function
 - Can be created dynamically at run time
 - Ex: Java object
- Second-class values
 - Can be passed as a parameter, but not returned from a subroutine or assigned to a variable
 - Ex: subroutines are 2nd class in most imperative languages, 1st class in functional languages
- Note: categories are somewhat loose and often used comparatively