Values and Types

Types of values

Type equivalence, compatibility, & inference

Main ideas

* Atype is a set of values, equipped with one or more operations
that can be applied uniformly to all those values

* Inclusion of data types in a language definition supports:
* readability, writability, and portability

e Atype system includes

* Type inference rules to infer an object’s data type from the available
information

* Atype equivalence algorithm for determining whether two objects are of
the same type

Values and Types

Types

* Atype is a set of values, equipped with one or more operations
that can be applied uniformly to all those values

* How to categorize values
Primitive

Composite
Pointers

References
Functions/procedures

* Different PLs support different types of values. Why?

Primitive types

* A primitive type is one whose values can’t be decomposed into
simpler values.

* Typically supported directly by the hardware — implications for
* Efficiency
e Storage

* Includes:
* Boolean
e Character
e String
* Integer
* Float
 Numeric data type ranges

* Names of types vary from one PL to another; not significant

Boolean

Boolean = {false, true}

Not always a built-in type
e Exin C: O =false, non-zero = true

X = 5y

O

while (x--) printf('x is %d7,

Storage
* Only need 1 bit, but...
* Memory addresses are larger than that

Operations: support short-circuiting?

Values and Types

X

) ;

Integers and floats

Integer=1{...,,-2,-1,0,1, 2, ... }
Float={...-1.0,..,0.0, .., 10..}

Implementation issues:
» Different types for different sizes

* Internal representation: 2’s complement, IEEE 754

* Range is hardware dependent, but language must help determine
upper/lower bounds

e Roundoff

Reals: fixed point vs. floating point support
* Fixed point has fixed number of digits after decimal
* Floating point, decimal can ‘float’ relative to significant digits

Defined numeric data types

e Subrange type: a contiguous subset of a simple type
e Base type: the type of elements in the subrange
* In Ada and Pascal we can define new numeric types by specifying a range
Exin Ada: type Population is range 0 .. 1elO0;

* Many languages support defining new enumeration types by
listing their explicit values (called enumerands)
* Underlying representation usually mapped to integers
* ExinAda: type Color is (red, green, Dblue);

Characters and strings

Character={... ‘A", ..., "2, ..., ‘0", ..., 9, .. }

Some languages support a character-string type
e Ex: ML, Prolog, Java

Others support a character type with strings stored explicitly as an
array of characters

e Ex: C, Pascal, Ada

Issues:

* Allowable character set and collating sequence (order of characters)
e Ex: EBCDIC, ASCII, ISO-Latin, Unicode
* Ex: EBCDIC has lower case < upper case < numbers
e Ex: ASCIl has numbers < upper case < lower case
* Representation
* Null terminated complicates size (Ex: C string)
* Limit on string size with length field

Pointers (7?)

e Language support features
* Null value
* Allocation & deallocation operations
* Implications for underlying memory management support
* Dereferencing

e |ssues

* What can a pointer point to?
e Restricted by type? int x, *iptr = &x;
* Type compatibility issues?
* “Generic” pointer? void *genericPtr;

* Dangling pointer problem: a pointer that points to storage that has been
deallocated

Composite types (data structures)

* Use type constructors to define new data structures

* Attributes of specifying data structures:

* Number of components
* |sthere an upper bound?
e Can the number change or is it fixed statically?

Type of each component
* Homogenous (components are the same)
* Heterogenous (components differ)

Component selection mechanism
* Whole or part access?

Component organization
Composite type allocation and deallocation

Composites: structures (records)

* Defined with type constructors
e Can be understood in terms of cartesian products

* For example, in C:
struct myRec {
typel a;
type2 b;
type3 c;
I
Domain(myRec) = Domain(typel) x Domain(type2) x Domain(type3)

struct myRec theStruct, rec2; // initialization allowed?
typel n = theStruct.a;
rec?2 = theStruct; // should this be allowed? More later!

Composites: unions (variant records)

* Can be understood in terms of disjoint union

* For example, in C:
union myVariant {

typel a;

type? b;

type3 c;

Domain (myVariant) = Domain(typel) + Domain(type2) + Domain(type3)

e Space for the fields is shared

Composites: unions

* Discriminated union
* Tagis attached to each field of the union
* Can be checked at run time to determine the type stored in the union

* Undiscriminated union (or free union)
* No tag

* Program must provide other ways to ensure that values of the correct type
are accessed

* Possible to store a value of one type and inadvertently (or intentionally?)
retrieve the “value” as another type

Example: Pascal Discriminated Union

type paytype = (salaried, hourly);
var employee : record
1id : integer;

dept : array [1..3] of char;
age : 1lnteger;

case payclass : paytype of

////égi;;ied : (monthlyRate : real;
Type tag

startDate : integer);
hourly : (ratePerHour : real;

regHours : 1nteger;

overtime : integer);

end;

Values and Types

Mappings

m:S — T, misamapping from every value in S to every value in T

* Arrays (finite; ordered index set)
* One or multi-dimensional

Hashes (finite; unordered index set)

In Pascal:
type Color = (red , green , blue) ;
Pixel = array (Color) of 0 . . 1;

Functions (procedures)
* Note: Ada uses the same notation for array accesses and function calls

Sets? In Pascal:

type Color = (red, green, blue);
Hue = set of Color;

Recursive types

* A recursive type is one defined in terms of itself

* Example: List
* asequence of 0 or more component values.
e |length = number of components.
e empty list has no components.
* A non-empty list consists of a head (its first component) and a tail (all but
its first component).

* Type declaration for integer-lists in Haskell
data IntlList = Nil | Cons Int IntList

Type Equivalence

Determines when two types are “equivalent” for purposes of some
operation

The problem of determining type equivalence raises two related
ideas:

 What does it mean to say that two types are the “same”?
* A data type issue
* What does it mean to say that two data objects of the same type
are “equal”?
* Asemanticissue

Structural equivalence

* T, =T, ifand only if T; and T, are built in the same way using the
same type constructors from the same simple types

e Some issues:

* Must the names of the fields be the same or is it enough that the
structures contain the same number and type of components?

e Consider:
struct foo { struct bar { struct tip {
int a; int c; char d;
char b; char d; int c;

}; bi b7

* Are foo and bar equivalent? How about tip?

Structural equivalence

 Structural equivalence does not mean that the two types mean
the same thing.

* For example (Pascal): Is 1en + vol meaningful?

type
Meters = integer;
Liters = integer;
var

len : Meters;

vol : Liters;
age : integer

Name Equivalence

* T =T, ifand only if T; and T, were defined in the same place.

* Example: Which of £1, £2, bl, b2 are equivalent under name
equivalence? Under structural equivalence?

typedef struct foo {
int ay;
char b;

} foo t;

typedef struct bar {
int a;
char b;

} bar t;

foo t f1, f£2;
bar t bl, b2;

Name Equivalence

* T =T, ifand only if T; and T, were defined in the same place.

* Example: Which of £1, £2, bl, b2 are equivalent under name
equivalence? Under structural equivalence?

typedef struct foo {

int a; 4 vl .
char b; undaer name equivaience:

} foo t; f1, f£2 areequivalent

bl, b2 areequivalent
typedef struct bar {

int a; _
char b: under structural equivalence:
} bar t; f1, £2, bl, b2 areequivalent

foo t f1, f£2;
bar t bl, b2;

Values and Types

Name Equivalence

* Anonymous types cannot be used. For example:

var x : array [1..10] of integer; /* Ex. 1 */
y : array [1..10] of integer;

* Here the variables are names, but the types are not

e x and vy are structurally equivalent, but not name equivalent

* Asimilar, but more ambiguous, problem occurs with

var x, y : array [1..10] of integer; /* Ex. 2 */

Ada solves this problem by saying that, in a case like this, it is as if we
had used the separate definitions given above in Ex. 1, so the two
variables are not type equivalent.

Declaration Equivalence

* Types that lead back to the same original structure declaration by
a series of re-declarations are considered to be equivalent types.

* By this rule, x&y in Ex. 1 are not equivalent, but they are in Ex. 2.

* Example:
type tl = array [1..10] of integer;
t2 = tl;
t3 = t2;

* Which are type equivalent under declaration equivalence?
All of them

Example

type tl = array [1..10] of integer;
t2 = tl;
t3 = array [1..10] of integer;
var x : tl;
y : t2;
z : t3;
w,v : array [1..10] of integer;

There are three different types here:
t1, t2, t3, and the unnamed type
associated with w and v.

What is their equivalence under the
three strategies?

Example

type tl = array [1..10] of integer;

t2 = tl;

t3 = array [1..10] of integer;
var X tl;

% t2;

y4 t£3;

w,v : array [1..10] of integer;

There are three different types here:
t1, t2, t3, and the unnamed type
associated with w and v.

What is their equivalence under the
three strategies?

Values and Types

under structural equivalence:

xX,y,z,w,v areequivalent

under name equivalence:

w, v are possibly equivalent
if we allow that they are
defined for the same
anonymous type (but most
languages classify as separate

types)

under declaration equivalence:

X,y areequivalent
w, V are equivalent

Type Compatibility

When can a value of one type be used in a context that expects
another type?

* Where is this an issue?
* Use of a value in some operation

* Assigning a value to a variable
* Passing a value as a parameter

* Primitives: create a type hierarchy based on principle “loss of
information”

* Non-primitives?

Type Inference

What is the type of an expression, given the types of the operands
and possibly the surrounding context?

An expression is a construct that will be evaluated to yield a value.
* Literals
* Variables and constants

e Conditionals

Iterative expressions

Function calls

Type Completeness Principle

* Type Completeness Principle: No operation should be arbitrarily
restricted in the types of its operands

* More special cases to learn creates more difficulty to program correctly

* First-class values
* Can be stored arbitrarily into variables and constants
e Can be passed into a function and returned from a function
* Can be created dynamically at run time
e Ex:Java object

 Second-class values

e Can be passed as a parameter, but not returned from a subroutine or
assigned to a variable

* Ex: subroutines are 2" class in most imperative languages, 1%t class in
functional languages

* Note: categories are somewhat loose and often used
comparatively

