
Values and Types
Types of values

Type equivalence, compatibility, & inference

Main ideas
• A type is a set of values, equipped with one or more operations

that can be applied uniformly to all those values

• Inclusion of data types in a language definition supports:
• readability, writability, and portability

• A type system includes
• Type inference rules to infer an object’s data type from the available

information
• A type equivalence algorithm for determining whether two objects are of

the same type

Values and Types

Types
• A type is a set of values, equipped with one or more operations

that can be applied uniformly to all those values

• How to categorize values
• Primitive
• Composite
• Pointers
• References
• Functions/procedures

• Different PLs support different types of values. Why?

Values and Types

Primitive types
• A primitive type is one whose values can’t be decomposed into

simpler values.
• Typically supported directly by the hardware – implications for

• Efficiency
• Storage

• Includes:
• Boolean
• Character
• String
• Integer
• Float
• Numeric data type ranges

• Names of types vary from one PL to another; not significant

Values and Types

Boolean
• Boolean = {false, true}

• Not always a built-in type
• Ex in C: 0 = false, non-zero = true
x = 5;
while (x--) printf(“x is %d”, x);

• Storage
• Only need 1 bit, but…
• Memory addresses are larger than that

• Operations: support short-circuiting?

Values and Types

Integers and floats
• Integer = {…, -2, -1, 0, 1, 2, … }
• Float = {… -1.0, …, 0.0, …, 1.0 … }

• Implementation issues:
• Different types for different sizes
• Internal representation: 2’s complement, IEEE 754
• Range is hardware dependent, but language must help determine

upper/lower bounds
• Roundoff

• Reals: fixed point vs. floating point support
• Fixed point has fixed number of digits after decimal
• Floating point, decimal can ‘float’ relative to significant digits

Values and Types

Defined numeric data types
• Subrange type: a contiguous subset of a simple type

• Base type: the type of elements in the subrange
• In Ada and Pascal we can define new numeric types by specifying a range

Ex in Ada: type Population is range 0 .. 1e10;

• Many languages support defining new enumeration types by
listing their explicit values (called enumerands)
• Underlying representation usually mapped to integers
• Ex in Ada: type Color is (red, green, blue);

Values and Types

Characters and strings
• Character = {… ‘A’, …, ‘Z’, …, ‘0’, …, ‘9’, … }
• Some languages support a character-string type

• Ex: ML, Prolog, Java

• Others support a character type with strings stored explicitly as an
array of characters
• Ex: C, Pascal, Ada

• Issues:
• Allowable character set and collating sequence (order of characters)

• Ex: EBCDIC, ASCII, ISO-Latin, Unicode
• Ex: EBCDIC has lower case < upper case < numbers
• Ex: ASCII has numbers < upper case < lower case

• Representation
• Null terminated complicates size (Ex: C string)
• Limit on string size with length field

Values and Types

Pointers (?)
• Language support features

• Null value
• Allocation & deallocation operations

• Implications for underlying memory management support
• Dereferencing

• Issues
• What can a pointer point to?

• Restricted by type? int x, *iptr = &x;
• Type compatibility issues?
• “Generic” pointer? void *genericPtr;

• Dangling pointer problem: a pointer that points to storage that has been
deallocated

Values and Types

Composite types (data structures)
• Use type constructors to define new data structures
• Attributes of specifying data structures:
• Number of components

• Is there an upper bound?
• Can the number change or is it fixed statically?

• Type of each component
• Homogenous (components are the same)
• Heterogenous (components differ)

• Component selection mechanism
• Whole or part access?

• Component organization
• Composite type allocation and deallocation

Values and Types

Composites: structures (records)
• Defined with type constructors
• Can be understood in terms of cartesian products
• For example, in C:

struct myRec {
type1 a;
type2 b;
type3 c;

};

Domain(myRec) = Domain(type1) x Domain(type2) x Domain(type3)

struct myRec theStruct, rec2; // initialization allowed?
type1 n = theStruct.a;
rec2 = theStruct; // should this be allowed? More later!

Values and Types

Composites: unions (variant records)
• Can be understood in terms of disjoint union
• For example, in C:

union myVariant {
type1 a;
type2 b;
type3 c;

}

Domain (myVariant) = Domain(type1) + Domain(type2) + Domain(type3)

• Space for the fields is shared

Values and Types

Composites: unions
• Discriminated union

• Tag is attached to each field of the union
• Can be checked at run time to determine the type stored in the union

• Undiscriminated union (or free union)
• No tag
• Program must provide other ways to ensure that values of the correct type

are accessed
• Possible to store a value of one type and inadvertently (or intentionally?)

retrieve the “value” as another type

Values and Types

Example: Pascal Discriminated Union
type paytype = (salaried, hourly);

var employee : record

id : integer;

dept : array [1..3] of char;

age : integer;

case payclass : paytype of

salaried : (monthlyRate : real;
startDate : integer);

hourly : (ratePerHour : real;

regHours : integer;

overtime : integer);

end;

Values and Types

Type tag

Mappings
𝑚 ∶ 𝑆 → 𝑇 , m is a mapping from every value in S to every value in T
• Arrays (finite; ordered index set)

• One or multi-dimensional

• Hashes (finite; unordered index set)
• In Pascal:

type Color = (red , green , blue) ;
Pixel = array (Color) of 0 . . 1;

• Functions (procedures)
• Note: Ada uses the same notation for array accesses and function calls

• Sets? In Pascal:
type Color = (red, green, blue);
Hue = set of Color;

Values and Types

Recursive types
• A recursive type is one defined in terms of itself
• Example: List

• a sequence of 0 or more component values.
• length = number of components.
• empty list has no components.
• A non-empty list consists of a head (its first component) and a tail (all but

its first component).

• Type declaration for integer-lists in Haskell
data IntList = Nil | Cons Int IntList

Values and Types

Type Equivalence
Determines when two types are “equivalent” for purposes of some
operation

The problem of determining type equivalence raises two related
ideas:
• What does it mean to say that two types are the “same”?

• A data type issue

• What does it mean to say that two data objects of the same type
are “equal”?
• A semantic issue

Values and Types

Structural equivalence
• 𝑇! ≡ 𝑇" if and only if 𝑇! and 𝑇" are built in the same way using the

same type constructors from the same simple types

• Some issues:
• Must the names of the fields be the same or is it enough that the

structures contain the same number and type of components?
• Consider:

• Are foo and bar equivalent? How about tip?

Values and Types

struct foo {
int a;
char b;

};

struct bar {
int c;
char d;

};

struct tip {
char d;
int c;

};

Structural equivalence
• Structural equivalence does not mean that the two types mean

the same thing.

• For example (Pascal): Is len + vol meaningful?

Values and Types

type
Meters = integer;
Liters = integer;

var
len : Meters;
vol : Liters;
age : integer

Name Equivalence
• 𝑇! ≡ 𝑇" if and only if 𝑇! and 𝑇" were defined in the same place.

• Example: Which of f1, f2, b1, b2 are equivalent under name
equivalence? Under structural equivalence?

Values and Types

typedef struct foo {
int a;
char b;

} foo_t;

typedef struct bar {
int a;
char b;

} bar_t;

foo_t f1, f2;
bar_t b1, b2;

Name Equivalence
• 𝑇! ≡ 𝑇" if and only if 𝑇! and 𝑇" were defined in the same place.

• Example: Which of f1, f2, b1, b2 are equivalent under name
equivalence? Under structural equivalence?

Values and Types

typedef struct foo {
int a;
char b;

} foo_t;

typedef struct bar {
int a;
char b;

} bar_t;

foo_t f1, f2;
bar_t b1, b2;

under name equivalence:
f1, f2 are equivalent
b1, b2 are equivalent

under structural equivalence:
f1, f2, b1, b2 are equivalent

Name Equivalence
• Anonymous types cannot be used. For example:
var x : array [1..10] of integer; /* Ex. 1 */

y : array [1..10] of integer;

• Here the variables are names, but the types are not
• x and y are structurally equivalent, but not name equivalent

• A similar, but more ambiguous, problem occurs with
var x, y : array [1..10] of integer; /* Ex. 2 */

Ada solves this problem by saying that, in a case like this, it is as if we
had used the separate definitions given above in Ex. 1, so the two
variables are not type equivalent.

Values and Types

Declaration Equivalence
• Types that lead back to the same original structure declaration by

a series of re-declarations are considered to be equivalent types.
• By this rule, x&y in Ex. 1 are not equivalent, but they are in Ex. 2.
• Example:

• Which are type equivalent under declaration equivalence?

Values and Types

type t1 = array [1..10] of integer;
t2 = t1;
t3 = t2;

All of them

Example

There are three different types here:
t1, t2, t3, and the unnamed type
associated with w and v.

What is their equivalence under the
three strategies?

Values and Types

type t1 = array [1..10] of integer;
t2 = t1;
t3 = array [1..10] of integer;

var x : t1;
y : t2;
z : t3;
w,v : array [1..10] of integer;

Example

There are three different types here:
t1, t2, t3, and the unnamed type
associated with w and v.

What is their equivalence under the
three strategies?

Values and Types

type t1 = array [1..10] of integer;
t2 = t1;
t3 = array [1..10] of integer;

var x : t1;
y : t2;
z : t3;
w,v : array [1..10] of integer;

under name equivalence:
w,v are possibly equivalent
if we allow that they are
defined for the same
anonymous type (but most
languages classify as separate
types)

under declaration equivalence:
x,y are equivalent
w,v are equivalent

under structural equivalence:
x,y,z,w,v are equivalent

Type Compatibility
When can a value of one type be used in a context that expects
another type?

• Where is this an issue?
• Use of a value in some operation
• Assigning a value to a variable
• Passing a value as a parameter

• Primitives: create a type hierarchy based on principle “loss of
information”

• Non-primitives?

Values and Types

Type Inference
What is the type of an expression, given the types of the operands
and possibly the surrounding context?

An expression is a construct that will be evaluated to yield a value.
• Literals
• Variables and constants
• Conditionals
• Iterative expressions
• Function calls

Values and Types

Type Completeness Principle
• Type Completeness Principle: No operation should be arbitrarily

restricted in the types of its operands
• More special cases to learn creates more difficulty to program correctly

• First-class values
• Can be stored arbitrarily into variables and constants
• Can be passed into a function and returned from a function
• Can be created dynamically at run time
• Ex: Java object

• Second-class values
• Can be passed as a parameter, but not returned from a subroutine or

assigned to a variable
• Ex: subroutines are 2nd class in most imperative languages, 1st class in

functional languages

• Note: categories are somewhat loose and often used
comparatively

Values and Types

