
Values and Types
Types of values

Type equivalence, compatibility, & inference



Main ideas
• A type is a set of values, equipped with one or more operations 

that can be applied uniformly to all those values

• Inclusion of data types in a language definition supports:
• readability, writability, and portability

• A type system includes
• Type inference rules to infer an object’s data type from the available 

information
• A type equivalence algorithm for determining whether two objects are of 

the same type
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Types
• A type is a set of values, equipped with one or more operations 

that can be applied uniformly to all those values

• How to categorize values
• Primitive
• Composite
• Pointers
• References
• Functions/procedures

• Different PLs support different types of values. Why?
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Primitive types
• A primitive type is one whose values can’t be decomposed into 

simpler values.
• Typically supported directly by the hardware – implications for

• Efficiency
• Storage

• Includes:
• Boolean
• Character
• String
• Integer
• Float
• Numeric data type ranges

• Names of types vary from one PL to another; not significant
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Boolean
• Boolean = {false, true}

• Not always a built-in type
• Ex in C:  0 = false, non-zero = true
x = 5;
while ( x-- ) printf(“x is %d”, x );

• Storage
• Only need 1 bit, but…
• Memory addresses are larger than that

• Operations: support short-circuiting?

Values and Types



Integers and floats
• Integer = {…, -2, -1, 0, 1, 2, … }
• Float = {… -1.0, …, 0.0, …, 1.0 … }

• Implementation issues:
• Different types for different sizes
• Internal representation: 2’s complement, IEEE 754
• Range is hardware dependent, but language must help determine 

upper/lower bounds
• Roundoff

• Reals: fixed point vs. floating point support
• Fixed point has fixed number of digits after decimal
• Floating point, decimal can ‘float’ relative to significant digits
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Defined numeric data types
• Subrange type: a contiguous subset of a simple type

• Base type: the type of elements in the subrange
• In Ada and Pascal we can define new numeric types by specifying a range

Ex in Ada: type Population is range 0 .. 1e10;

• Many languages support defining new enumeration types by 
listing their explicit values (called enumerands)
• Underlying representation usually mapped to integers
• Ex in Ada: type Color is (red, green, blue);
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Characters and strings
• Character = {… ‘A’, …, ‘Z’, …, ‘0’, …, ‘9’, … }
• Some languages support a character-string type

• Ex: ML, Prolog, Java

• Others support a character type with strings stored explicitly as an 
array of characters
• Ex: C, Pascal, Ada

• Issues:
• Allowable character set and collating sequence (order of characters)

• Ex: EBCDIC, ASCII, ISO-Latin, Unicode
• Ex: EBCDIC has lower case < upper case < numbers
• Ex: ASCII has numbers < upper case < lower case

• Representation
• Null terminated complicates size (Ex: C string)
• Limit on string size with length field
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Pointers (?)
• Language support features

• Null value
• Allocation & deallocation operations

• Implications for underlying memory management support
• Dereferencing

• Issues
• What can a pointer point to?

• Restricted by type?     int x, *iptr = &x;
• Type compatibility issues?
• “Generic” pointer?      void *genericPtr; 

• Dangling pointer problem: a pointer that points to storage that has been 
deallocated
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Composite types (data structures)
• Use type constructors to define new data structures
• Attributes of specifying data structures:
• Number of components

• Is there an upper bound?
• Can the number change or is it fixed statically?

• Type of each component
• Homogenous (components are the same)
• Heterogenous (components differ)

• Component selection mechanism
• Whole or part access?

• Component organization
• Composite type allocation and deallocation
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Composites: structures (records)
• Defined with type constructors
• Can be understood in terms of cartesian products
• For example, in C:

struct myRec { 
type1 a;
type2 b;
type3 c;

};

Domain(myRec) = Domain(type1) x Domain(type2) x Domain(type3)

struct myRec theStruct, rec2; // initialization allowed?
type1 n = theStruct.a;
rec2 = theStruct;   // should this be allowed? More later!
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Composites: unions (variant records)
• Can be understood in terms of disjoint union
• For example, in C:

union myVariant { 
type1 a;
type2 b;
type3 c;

}

Domain (myVariant) = Domain(type1) + Domain(type2) + Domain(type3)

• Space for the fields is shared
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Composites: unions
• Discriminated union

• Tag is attached to each field of the union
• Can be checked at run time to determine the type stored in the union

• Undiscriminated union (or free union)
• No tag
• Program must provide other ways to ensure that values of the correct type 

are accessed
• Possible to store a value of one type and inadvertently (or intentionally?) 

retrieve the “value” as another type
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Example: Pascal Discriminated Union
type paytype = (salaried, hourly); 

var employee : record 

id : integer; 

dept : array [1..3] of char; 

age : integer; 

case payclass : paytype of 

salaried : (monthlyRate : real; 
startDate : integer); 

hourly : (ratePerHour : real; 

regHours : integer; 

overtime : integer); 

end;
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Mappings
𝑚 ∶ 𝑆 → 𝑇 , m is a mapping from every value in S to every value in T
• Arrays (finite; ordered index set)

• One or multi-dimensional

• Hashes (finite; unordered index set)
• In Pascal:

type Color = ( red , green , blue ) ;
Pixel = array ( Color ) of 0 . . 1;

• Functions (procedures)
• Note: Ada uses the same notation for array accesses and function calls

• Sets? In Pascal:
type Color = ( red, green, blue );
Hue = set of Color;
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Recursive types
• A recursive type is one defined in terms of itself
• Example: List

• a sequence of 0 or more component values.
• length = number of components.
• empty list has no components.
• A non-empty list consists of a head (its first component) and a tail (all but 

its first component).

• Type declaration for integer-lists in Haskell
data IntList = Nil | Cons Int IntList
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Type Equivalence
Determines when two types are “equivalent” for purposes of some 
operation

The problem of determining type equivalence raises two related 
ideas:
• What does it mean to say that two types are the “same”?

• A data type issue

• What does it mean to say that two data objects of the same type 
are “equal”?
• A semantic issue
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Structural equivalence
• 𝑇! ≡ 𝑇" if and only if 𝑇! and 𝑇" are built in the same way using the 

same type constructors from the same simple types

• Some issues:
• Must the names of the fields be the same or is it enough that the 

structures contain the same number and type of components?
• Consider:

• Are foo and bar equivalent? How about tip?

Values and Types

struct foo { 
int a; 
char b; 

};

struct bar {
int c; 
char d; 

};

struct tip {
char d; 
int c;

};



Structural equivalence
• Structural equivalence does not mean that the two types mean

the same thing.

• For example (Pascal):  Is  len + vol meaningful?
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type
Meters = integer;
Liters = integer;

var
len : Meters;
vol : Liters;
age : integer



Name Equivalence
• 𝑇! ≡ 𝑇" if and only if 𝑇! and 𝑇" were defined in the same place.

• Example: Which of f1, f2, b1, b2 are equivalent under name 
equivalence? Under structural equivalence?
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typedef struct foo { 
int a; 
char b; 

} foo_t; 

typedef struct bar { 
int a; 
char b; 

} bar_t; 

foo_t f1, f2; 
bar_t b1, b2; 



Name Equivalence
• 𝑇! ≡ 𝑇" if and only if 𝑇! and 𝑇" were defined in the same place.

• Example: Which of f1, f2, b1, b2 are equivalent under name 
equivalence? Under structural equivalence?
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typedef struct foo { 
int a; 
char b; 

} foo_t; 

typedef struct bar { 
int a; 
char b; 

} bar_t; 

foo_t f1, f2; 
bar_t b1, b2; 

under name equivalence:
f1, f2 are equivalent
b1, b2 are equivalent

under structural equivalence:
f1, f2, b1, b2 are equivalent



Name Equivalence
• Anonymous types cannot be used. For example:
var x : array [1..10] of integer;  /* Ex. 1 */ 

y : array [1..10] of integer;

• Here the variables are names, but the types are not
• x and y are structurally equivalent, but not name equivalent

• A similar, but more ambiguous, problem occurs with
var x, y : array [1..10] of integer; /* Ex. 2 */

Ada solves this problem by saying that, in a case like this, it is as if we 
had used the separate definitions given above in Ex. 1, so the two 
variables are not type equivalent.
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Declaration Equivalence
• Types that lead back to the same original structure declaration by 

a series of re-declarations are considered to be equivalent types.
• By this rule, x&y in Ex. 1 are not equivalent, but they are in Ex. 2.
• Example:

• Which are type equivalent under declaration equivalence?

Values and Types

type  t1 = array [1..10] of integer; 
t2 = t1; 
t3 = t2; 

All of them



Example

There are three different types here: 
t1, t2, t3, and the unnamed type 
associated with w and v.

What is their equivalence under the 
three strategies?
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type t1 = array [1..10] of integer; 
t2 = t1; 
t3 = array [1..10] of integer; 

var  x : t1; 
y : t2;  
z : t3; 
w,v : array [1..10] of integer; 



Example

There are three different types here: 
t1, t2, t3, and the unnamed type 
associated with w and v.

What is their equivalence under the 
three strategies?
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type t1 = array [1..10] of integer; 
t2 = t1; 
t3 = array [1..10] of integer; 

var  x : t1; 
y : t2;  
z : t3; 
w,v : array [1..10] of integer; 

under name equivalence:
w,v are possibly equivalent 
if we allow that they are 
defined for the same 
anonymous type (but most 
languages classify as separate 
types)

under declaration equivalence:
x,y are equivalent
w,v are equivalent

under structural equivalence:
x,y,z,w,v are equivalent



Type Compatibility
When can a value of one type be used in a context that expects 
another type?

• Where is this an issue?
• Use of a value in some operation
• Assigning a value to a variable
• Passing a value as a parameter

• Primitives: create a type hierarchy based on principle “loss of 
information”

• Non-primitives?
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Type Inference
What is the type of an expression, given the types of the operands 
and possibly the surrounding context?

An expression is a construct that will be evaluated to yield a value.
• Literals
• Variables and constants
• Conditionals
• Iterative expressions
• Function calls
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Type Completeness Principle
• Type Completeness Principle: No operation should be arbitrarily 

restricted in the types of its operands
• More special cases to learn creates more difficulty to program correctly

• First-class values
• Can be stored arbitrarily into variables and constants
• Can be passed into a function and returned from a function
• Can be created dynamically at run time
• Ex: Java object

• Second-class values
• Can be passed as a parameter, but not returned from a subroutine or 

assigned to a variable
• Ex: subroutines are 2nd class in most imperative languages, 1st class in 

functional languages

• Note: categories are somewhat loose and often used 
comparatively
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