
CS 222: Programming Languages

Introduction to Functional Programming 
and

Haskell



Functional Programming

• The Functional Programming Paradigm is one of the 
major programming paradigms.
– Functional Programming is a type of declarative programming paradigm –

you describe the logic of the computation, not the flow of control
– Also known as applicative programming

• Idea: everything is a function
• Based on sound theoretical frameworks (e.g., λ-

calculus)
• Examples of FP languages

– First FP language: Lisp
– Other important FPs: ML, Haskell, Miranda, Scheme, Logo

CS 222: Functional Programming I 2



Imperative versus Functional

• The design of the imperative languages is based directly 
on the von Neumann architecture
– Efficiency is the primary concern, rather than the suitability of 

the language for software development

• The design of the functional languages is based on 
mathematical functions
– A solid theoretical basis that is also closer to the user, but 

relatively unconcerned with the architecture of the machines 
on which programs will run

CS 222: Functional Programming I 3



Characteristics of Pure FPLs

Pure FP languages tend to
– Have no side-effects
– Have no assignment statements
– Often have no variables!
– Be built on a small, concise framework
– Have a simple, uniform syntax
– Be implemented via interpreters rather than compilers
– Be mathematically easier to handle

CS 222: Functional Programming I 4



Imperative versus Functional

• Summing integers from 1 to 10 in Java

• Summing integers from 1 to 10 in Scheme (Lisp)
(define sum (lambda (l)

(if (null? l) 0

(+ (car l) (sum (cdr l))))))

• Summing integers from 1 to 10 in Haskell

CS 222: Functional Programming I 5

total = 0;

for (i = 1; i £ 10; ++i)

total = total+i;

The computation method is 
variable assignment with 
side effects (change state)

sum [1..10]

The computation method is 
function application



Importance of FP

• In their pure form, FPLs dispense with the notion of 
assignment (claim: it’s easier)

• FPLs encourage thinking at higher levels of abstraction
– support modifying and combining existing programs
– thus, FPLs encourage programmers to work in units larger than statements 

of conventional languages: "programming in the large”

• FPLs provide a paradigm for parallel computing
– absence of assignment (or single assignment)
– independence of evaluation order

CS 222: Functional Programming I 6



Lisp

• Defined by John McCarthy ~1958 as a language for AI. 
• Originally, LISP was a typeless language with only two data types: atom 

and list
• LISP’s lists are stored internally as single-linked lists
• Lambda notation was used to specify functions
• Function definitions, function applications, and data all have the same 

form

If the list (A B C) is interpreted as data it is a simple list of three 
atoms, A, B, and C but if interpreted as a function application, it means 
that the function named A is applied to the two parameters, B and C

CS 222: Functional Programming I 7



Scheme

• Mid 70’s: Sussman and Steele (MIT) defined Scheme as a new LISP-like 
Language 

• Goal: return Lisp to its simpler roots and incorporate ideas which had been 
developed in the PL community since 1960
– Uses only static scoping
– Treat functions as first-class objects that can be the values of expressions & elements 

of lists, assigned to variables and passed as parameters
– Includes the ability to create and manipulate closures and continuations

• A closure is a data structure that holds an expression & an environment of variable 
bindings in which it is to be evaluated. It is used to represent unevaluated 
expressions when implementing FPLs with lazy evaluation

• A continuation is a data structure which represents “the rest of a computation”

• Scheme has mostly been used for teaching programming concepts whereas 
Common Lisp is widely used as a practical language

CS 222: Functional Programming I 8



ML (Meta Language)

• ML is a strict, static-scoped functional language with a Pascal-like 
syntax that was defined by Robin Milner et. al. in 1973

• It was the first language to include statically checked polymorphic 
typing
• Uses type declarations, but also does type inferencing to determine the types 

of undeclared variables
• Strongly typed (whereas Scheme is essentially typeless) and has no type 

coercions
• Includes exception handling and a module facility for 

implementing abstract data types, and garbage collection
• Most common dialect is Standard ML (SML)

CS 222: Functional Programming I 9



Haskell

• Similar to ML (syntax, static scoped, strongly typed, type 
inferencing)

• Different from ML and most other FPLs in that it is purely functional 
-- no variables, no assignment statements, and no side effects

• Some key features:
- Uses lazy evaluation (evaluate no subexpression until the value is 

needed)
- Has “list comprehensions” to deal with infinite lists

CS 222: Functional Programming I 10



Some FP Concepts
• A number of interesting programming language 

concepts have arisen, including:
– Curried functions
– Type inferencing
– Polymorphic functions
– Higher-order functions
– Functional abstraction
– Lazy evaluation

• For next class – look up and define each of the 
bulleted items in your own words. Submit to Moodle

CS 222: Functional Programming I 11


