
CS 222:
Programming Languages

Heather M. Guarnera

print(“Welcome!”)
printf(“Welcome!\n”);

System.out.println(“Welcome!”);
main = putStrLn “Welcome!”



4 (or 5) generations of 
programming languages
• 1GL: machine code
• 2GL: symbolic assemblers
• 3GL: (machine-independent) imperative languages

• Ex: FORTRAN, Pascal, C ...
• 4GL: domain specific application generators

• Scinapse a generator for mathematical modeling software
• Mousetrap generates efficient real-time code for Motorola
• R, SAS, SPSS, XSLT, Xquery …

• 5GL: AI languages …

Each generation is at a higher level of abstraction

2



Performance vs. ease of writing

Assembly
Fortran
C
Prolog
Ada
C++
Java
Python

3

Low-level

High-level

Low-level language:
• Native (or close to) to physical machine
• Efficient

High-level language:
• Higher abstraction
• Easier to read / write
• Tradeoff with efficiency



Common ideas in modern 
imperative languages
• Extensive features
• Rich type system
• Mechanisms to support (in varying degree)

• Procedural programming
• Object-oriented programming
• Concurrent programming
• Generic programming
• Abstractions
• Information hiding

4



How do programming languages 
differ?
Common constructs
basic data types (numbers, etc.); variables; expressions; 
statements; keywords; control constructs; procedures; 
comments; errors ...

Uncommon constructs
type declarations; special types (strings, arrays, matrices, ...); 
concurrency constructs; packages/modules; objects; general 
functions; generics; ...

5



Programming paradigms

A programming language is a problem solving tool. 

6

Imperative style program = algorithms + data
Good for decomposition

Functional style program = functions ⚬ functions 
Good for reasoning

Logic programming style program = facts + rules
Good for searching

Object-oriented style program = objects + messages
Good for modeling



Imperative Paradigm

• A program is: a sequence of state-changing actions

• Manipulate an abstract machine with
• variables that name memory locations
• arithmetic and logical operations
• reference, evaluate, assign operations
• explicit control flow statements

• Fits the Von Neumann architecture closely

• Key operations: assignment, if, while

7



Imperative Paradigm
Task: Sum up twice each number from 1 to N.

8

SUM = 0
DO 11 K=1,N

SUM = SUM + 2*K
11   CONTINUE

Fortran

sum = 0;
for (k = 1; k <= n; ++k)

sum += 2*k;

C

sum := 0;
for k := 1 to n do

sum := sum + 2*k;

Pascal



Functional Paradigm

• A program is: a composition of functions on data

• Characteristics (in pure form):
• Name values, not memory locations
• Bind rather than assign
• A variable is a table entry not a memory location

• Value binding through parameter passing
• Recursion rather than iteration

• Key operations: function application and function abstraction
• Based on lambda calculus

9



Functional Paradigm

10

(define (sum n)
(if (= n 0)

0
(+ (* n 2) (sum (- n 1)))

)
)

(sum 4)  evaluates to 20

Scheme



Logic Paradigm

• A program is: a formal logical specification of a problem

• Characteristics (in pure form):
• Programs say what properties the solution must have, 

not how to find it
• Solutions are obtained through a specialized form of 

theorem-proving

• Key operations: unification and non-deterministic search
• Based on first order predicate logic

11



Logic Paradigm

12

sum(0,0).
sum(N,S) :- N>0,

NN is N – 1,
sum(NN, SS),
S is N * 2 + SS.

?- sum(1,2).
yes
?- sum(2,4).
no
?- sum(4,S).
S = 20
?- sum(X,Y).
X = 0 = Y

Prolog



Object-oriented Paradigm

• A program is: communication between abstract objects

• Characteristics:
• Objects collect both the data and the operations
• Objects provide data abstraction
• Can be either imperative or functional (or logical)

• Key operations: message passing or method invocation

13



Object-oriented Paradigm

14

public class IntSet {
...

public Integer sum() {
Integer s = 0;
ListIterator<Integer> it = intVals.listIterator()
while (it.hasNext()) {
s = s + 2 * it.next();

}
return s;

}
}

Java

IntSet mySet = new IntSet(3);
mySet.sum();



Goals of this course
• Realize differences between programming languages
• Paradigm
• Purpose / support for problem solving
• Features

• Understand how a translator reads a program, both theoretically 
and practically
• Develop marketable skills
• Become a polyglot
• Writing, research, collaboration, algorithm design & software 

development skills
• Technical skills: Git, GitHub, Java, Haskell, (Prolog?)

15


