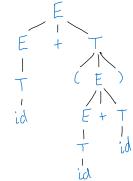

Programming Languages - Lab 2: Grammars, Parse Trees, & Automata

Name: Answer Key

- [5pts] Describe the language denoted by the regular expression: 0(0|1)*0
 It generates the set of strings that begin and end with a 0, with zero or more 0s and/or 1s in between.
- [5pts] Write a regular expression for the language that includes all strings of 0's and 1's with an even number of 0's followed by an odd number of 1's.
 (00)*1(11)*
- 3. **[12pts]** Consider the following grammar consisting of terminals {-, /, (,), id}, the set of non-terminals {E, T, F}, the start symbol E, and the following rules:
 - $E \to T$ $E \to E T$
 - $T \rightarrow F$
 - $T \rightarrow T / F$
 - $F \rightarrow \mathsf{id}$
 - $F \rightarrow (E)$
 - a. Construct a leftmost derivation for the same string.
 - b. Construct a rightmost derivation for the same string.
 - c. Construct a parse tree for the string: id id / id
 - (a) Leftmost: (b) Rightmost: $E \rightarrow E - T$ $E \rightarrow E - T$ \rightarrow T – T $\rightarrow E - T / F$ \rightarrow F – T \rightarrow E – T / id \rightarrow id – T \rightarrow E – F / id \rightarrow id – T / F \rightarrow E – id / id \rightarrow id – F / F \rightarrow T – id / id \rightarrow id – id / F \rightarrow F - id / id \rightarrow id – id / id \rightarrow id – id / id
- 4. **[8pts]** Replace the productions $E \rightarrow E T$ and $T \rightarrow T / F$ from the grammar described in Problem 3 with the productions $E \rightarrow E / T$ and $T \rightarrow T F$ respectively, so that the resulting rules are as follows:
 - $E \rightarrow T$ $E \rightarrow E/T$ $T \rightarrow F$ $T \rightarrow T F$ $F \rightarrow id$ $F \rightarrow (E)$ (a) Parse Tree E $F \rightarrow T F$
 - a. Construct a new parse tree for the string: id id / id

b. What is the difference? Is the new grammar ambiguous? Defend.

It is not ambiguous, but it gives subtraction higher precedence than division.


(c) Parse Tree

5. **[12pts]** Consider the CFG consisting of terminals {+, (,), id}, non-terminals {E, T}, start symbol E, and production rules:

 $E \rightarrow E + T \mid T$ $T \rightarrow (E) \mid id$

Give the rightmost and leftmost derivations for id + (id + id). Is this grammar ambiguous? Defend!

Rightmost: Leftmost: $E \rightarrow E + T$ $E \rightarrow E + T$ \rightarrow E + (E) \rightarrow T + T \rightarrow E + (E + T) \rightarrow id + T \rightarrow E + (E + id) \rightarrow id + (E) \rightarrow E + (T + id) \rightarrow id + (E + T) \rightarrow E + (id + id) \rightarrow id + (T + T) \rightarrow id + (id + T) \rightarrow T + (id + id) \rightarrow id + (id + id) \rightarrow id + (id + id)

False

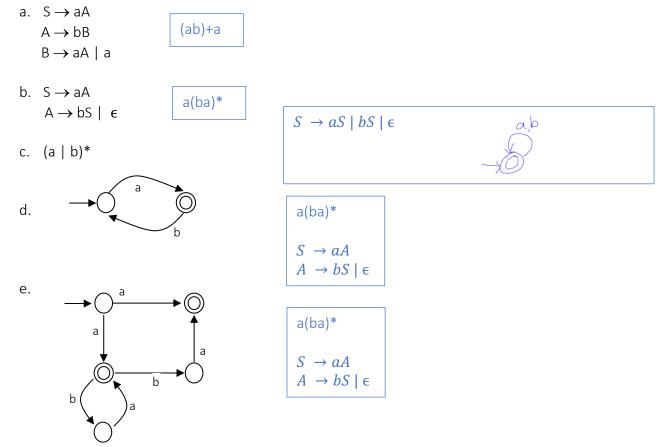
False

It is not ambiguous. Different derivations produce just one parse tree.

Questions 6 – 9 refer to the following context free grammar:

 $A \rightarrow B \& A \mid B$ $B \rightarrow B @ C \mid C$ $C \rightarrow C * x \mid x \mid (A)$

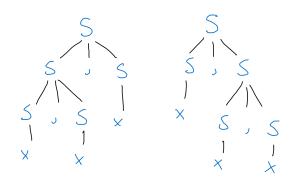
- 6. [10pts] Indicate True or False for each of the following statements.
 - a. The & operator has higher precedence than the @ operator. False
 - b. The & operator has higher precedence than the * operator. False
 - c. The & operator associates to the left.
 - d. The * operator associates to the left. True
 - e. The grammar is ambiguous.


Hint: binary + is left associative: id + id + id => (id + id) + id Also, try drawing the parse tree for id + id + id

- 7. **[5pts]** The abstract syntax tree for x*x&x@x@x is the same as which of the following?
 - a. (((x*x)&x)@x)@x
 - b. (x*x)&((x@x)@x) b.This one
 - c. (x*x)&(x@(x@x))
 - d. x*((x&x)@(x@x))
- 8. **[5pts]** Which of the following is a rightmost derivation? Discussed in pages 34-40 of Mead.
 - a. $A \rightarrow B\&A \rightarrow B\&B \rightarrow B\&B@C \rightarrow B\&B@x \rightarrow B\&C@x \rightarrow B\&x@x \rightarrow C\&x@x \rightarrow x\&x@x$. a. This one
 - b. $A \rightarrow B\&A \rightarrow C\&A \rightarrow C\&B \rightarrow C\&B@C \rightarrow C\&C@C \rightarrow C\&C@x \rightarrow C\&x@x \rightarrow x\&x@x$
 - c. $A \rightarrow B\&A \rightarrow B\&B \rightarrow C\&B \rightarrow C\&B@C \rightarrow x\&B@C \rightarrow x\&C@C \rightarrow x\&x@C \rightarrow x\&x@x$
 - d. $A \rightarrow B\&A \rightarrow C\&A \rightarrow x\&A \rightarrow x\&B \rightarrow x\&B@C \rightarrow x\&C@C \rightarrow x\&x@C \rightarrow x\&x@x$

9. [5pts] All derivations in the previous question correspond to the same parse tree. Draw that parse tree.

10. **[20pts (4each)]** Provide a regular expression for the regular grammars (a and b), a regular grammar *or* an FSA for the regular expression (c), and either a regular expression or a regular grammar for the FSAs (d and e).



11. [6pts] Activity 1 on p. 37 of the Mead book.

Derivation 1:	Derivation 2:
$Exp \to Exp subT Exp$	$Exp \to Exp subT Exp$
ightarrow intT subT Exp	ightarrow Exp subT Exp subT Exp
ightarrow intT subT Exp subT Exp	ightarrow Exp subT Exp subT intT
ightarrow intT subT intT subT Exp	ightarrow Exp subT intT subT intT
ightarrow intT subT intT subT intT	\rightarrow intT subT intT subT intT
$\rightarrow 10 - 4 - 3$	$\rightarrow 10 - 4 - 3$
\rightarrow 9	\rightarrow 3
\rightarrow 9	\rightarrow 3

12. [6pts] Activity 2 on p. 38 of the Mead book.

Two different parse trees for the string x,x,x

