
E ® T
E ® E – T
T ® F
T ® T / F
F ® id
F ® (E)

Programming Languages - Lab 2: Grammars, Parse Trees, & Automata
Name: Answer Key

1. [5pts] Describe the language denoted by the regular expression: 0(0|1)*0

It generates the set of strings that begin and end with a 0, with zero or more 0s and/or 1s in between.

2. [5pts] Write a regular expression for the language that includes all strings of 0’s and 1’s with an even number
of 0’s followed by an odd number of 1’s.
(00)*1(11)*

3. [12pts] Consider the following grammar consisting of terminals {-, /, (,), id}, the set of non-terminals {E, T,

F}, the start symbol E, and the following rules:

a. Construct a leftmost derivation for the same string.
b. Construct a rightmost derivation for the same string.
c. Construct a parse tree for the string: id – id / id

4. [8pts] Replace the productions E ® E – T and T ® T / F from the grammar described in Problem 3 with the

productions E ® E / T and T ® T – F respectively, so that the resulting rules are as follows:

a. Construct a new parse tree for the string: id – id / id
b. What is the difference? Is the new grammar ambiguous? Defend.
It is not ambiguous, but it gives subtraction higher precedence than division.

(a) Parse Tree

(c) Parse Tree

E ® T
E ® E / T
T ® F
T ® T – F
F ® id
F ® (E)

(a) Leftmost:
E ® E – T
 ® T – T
 ® F – T
 ® id – T
 ® id – T / F
 ® id – F / F
 ® id – id / F
 ® id – id / id

(b) Rightmost:
E ® E – T
 ® E – T / F
 ® E – T / id
 ® E – F / id
 ® E – id / id
 ® T – id / id
 ® F – id / id
 ® id – id / id

5. [12pts] Consider the CFG consisting of terminals {+, (,), id}, non-terminals {E, T}, start symbol E, and
production rules:

Give the rightmost and leftmost derivations for id + (id + id). Is this grammar ambiguous? Defend!

It is not ambiguous. Different derivations produce just one parse tree.

Questions 6 – 9 refer to the following context free grammar:
 A ® B & A | B
 B ® B @ C | C
 C ® C * x | x | (A)

6. [10pts] Indicate True or False for each of the following statements.

a. The & operator has higher precedence than the @ operator. False
b. The & operator has higher precedence than the * operator. False
c. The & operator associates to the left. False
d. The * operator associates to the left. True
e. The grammar is ambiguous. False

Hint: binary + is left associative: id + id + id => (id + id) + id Also, try drawing the parse tree for id + id + id

7. [5pts] The abstract syntax tree for x*x&x@x@x is the same as which of the following?

a. (((x*x)&x)@x)@x
b. (x*x)&((x@x)@x) b.This one
c. (x*x)&(x@(x@x))
d. x*((x&x)@(x@x))

8. [5pts] Which of the following is a rightmost derivation? Discussed in pages 34-40 of Mead.

a. A ® B&A ® B&B ® B&B@C ® B&B@x ® B&C@x ® B&x@x ® C&x@x ® x&x@x. a. This one
b. A ® B&A ® C&A ® C&B ® C&B@C ® C&C@C ® C&C@x ® C&x@x ® x&x@x
c. A ® B&A ® B&B ® C&B ® C&B@C ® x&B@C ® x&C@C ® x&x@C ® x&x@x
d. A ® B&A ® C&A ® x&A ® x&B ® x&B@C ® x&C@C ® x&x@C ® x&x@x

E ® E + T | T
T ® (E) | id

Rightmost:
E ® E + T
 ® E + (E)
 ® E + (E + T)
 ® E + (E + id)
 ® E + (T + id)
 ® E + (id + id)
 ® T + (id + id)
 ® id + (id + id)

Leftmost:
E ® E + T
 ® T + T
 ® id + T
 ® id + (E)
 ® id + (E + T)
 ® id + (T + T)
 ® id + (id + T)
 ® id + (id + id)

9. [5pts] All derivations in the previous question correspond to the same parse tree. Draw that parse tree.

10. [20pts (4each)] Provide a regular expression for the regular grammars (a and b), a regular grammar or an FSA

for the regular expression (c), and either a regular expression or a regular grammar for the FSAs (d and e).
a. S ® aA

 A ® bB
 B ® aA | a

b. S ® aA
 A ® bS | ϵ

c. (a | b)*

d.

e.

a

a

a

a

b
b

(ab)+a

a(ba)*
𝑆	 → 𝑎𝑆	|	𝑏𝑆	|	ϵ

a(ba)*

𝑆	 → 𝑎𝐴
𝐴	 → 𝑏𝑆	|	ϵ

a

b

a(ba)*

𝑆	 → 𝑎𝐴
𝐴	 → 𝑏𝑆	|	ϵ

11. [6pts] Activity 1 on p. 37 of the Mead book.

12. [6pts] Activity 2 on p. 38 of the Mead book.
Two different parse trees for the string x,x,x

Derivation 1:
Exp ® Exp subT Exp
 ® intT subT Exp
 ® intT subT Exp subT Exp
 ® intT subT intT subT Exp
 ® intT subT intT subT intT
 ® 10 – 4 – 3
 ® 9

Derivation 2:
Exp ® Exp subT Exp
 ® Exp subT Exp subT Exp
 ® Exp subT Exp subT intT
 ® Exp subT intT subT intT
 ® intT subT intT subT intT
 ® 10 – 4 – 3
 ® 3

