Programming Languages - Lab 2: Grammars, Parse Trees, & Automata
Name: Answer Key

1. [5pts] Describe the language denoted by the regular expression: 0(0]1)*0
It generates the set of strings that begin and end with a 0, with zero or more Os and/or 1s in between.

2. [5pts] Write a regular expression for the language that includes all strings of 0’s and 1’s with an even number
of 0’s followed by an odd number of 1’s.
(00)*1(11)*

3. [12pts] Consider the following grammar consisting of terminals {-, /, (,), id}, the set of non-terminals {E, T,
F}, the start symbol E, and the following rules:
E>T
E>E-T
T>F
T—>T/F
F—id
F— (E)
a. Construct a leftmost derivation for the same string.
b. Construct a rightmost derivation for the same string.

c. Construct a parse tree for the string: id—id /id (c) Parse Tree

(a) Leftmost: (b) Rightmost: E

E->E-T E>E-T
—->T-T —E-T/F E/’\ \T
SF-T SE-T/id | N
—>id-T —E-F/id T T/ F
Sid-T/F S E-id/id \ { |
—id—F/F —T—id/id = oo
Sid—id/F SF-id/id ooy
—id—id/id —id—id/id 1o} 1

4. [8pts] Replace the productions E—E—T and T— T/F from the grammar described in Problem 3 with the
productions E—E/T and T— T—F respectively, so that the resulting rules are as follows:

E:;—/T (a) Parse Tree
To>F E
T>T-F N
F—id E /T
F—(E) l \
I F
a. Construct a new parse tree for the string: id —id / id AR \
b. What is the difference? Is the new grammar ambiguous? Defend. T - F IC}\
It is not ambiguous, but it gives subtraction higher precedence than division. \ l
D

ol

5. [12pts] Consider the CFG consisting of terminals {+, (,), id}, non-terminals {E, T}, start symbol E, and
production rules:

ESE+T|T
T (E)|id

Give the rightmost and leftmost derivations for id + (id + id). Is this grammar ambiguous? Defend!

Rightmost: Leftmost:

E>E+T E—S>E+T /}T:\

— E+(E) —>T+T E + T

—SE+(E+T) —>id+T | N

— E+ (E +id) —id + (E) T C D

— E+(T+id) —id+(E+T) | VAN

— E+ (id +id) Sid+(T+T) L Ex T

T+ (id +id) Sid+(id+T) i "A

—id + (id +id) —id + (id +id) Co!
70N

It is not ambiguous. Different derivations produce just one parse tree.

Questions 6 — 9 refer to the following context free grammar:
A—>B&A|B
B>B@C]|C
CoC*x|x|(A)

6. [10pts] Indicate True or False for each of the following statements.
a. The & operator has higher precedence than the @ operator. False
b. The & operator has higher precedence than the * operator. False

c. The & operator associates to the left. False
d. The * operator associates to the left. True
e. The grammar is ambiguous. False

Hint: binary + is left associative: id + id + id => (id + id) + id Also, try drawing the parse tree for id + id + id

7. [5pts] The abstract syntax tree for x*x&x@x@x is the same as which of the following?
a. (((x*x)&x)@x)@x
b. (X*})&((x@x)@x) b.This one
c. (X*x)&(x@(x@x))
d. x*((x&x)@(x@x))

8. [5pts] Which of the following is a rightmost derivation? Discussed in pages 34-40 of Mead.
a. A— B&A —- B&B - B&B@C - B&B@x — B&LC@x = B&X@X — C&X@x —> X&x@x. a. This one
b. A— B&A - C&A — C&B — C&B@C — C&C@C — C&C@x — C&X@X —> X&X@X
c. A— B&A —>B&B — C&B - C&B@C — x&B@C - x&C@C — x&x@C — x&x@x
d. A— B&A — C&A - x&A — x&B — x&B@C — x&C@C — x&x@C — x&x@x

9. [5pts] All derivations in the previous question correspond to the same parse tree. Draw that parse tree.

A

AR
2 A
\

B
JIN

x— O —

8@%
|
cx
X

10. [20pts (4each)] Provide a regular expression for the regular grammars (a and b), a regular grammar or an FSA
for the regular expression (c), and either a regular expression or a regular grammar for the FSAs (d and e).

a. S—aA
A — bB (ab)+a
B—>aA|a

b. S—aA a(ba)*
A—>DbS| €

S —>aS|bS|e o b

c. (a]b)* \&

d. ﬁ(\\/:@ a(ba)*
S - add
A - bS|e
e. 3
al T a(ba)*
° S - adA

O——0 A > bS|e
5

11. [6pts] Activity 1 on p. 37 of the Mead book.

Derivation 1: Derivation 2:
Exp — Exp subT Exp Exp — Exp subT Exp

— intT subT Exp

— intT subT Exp subT Exp
— intT subT intT subT Exp
— intT subT intT subT intT
—>10-4-3

-9

12. [6pts] Activity 2 on p. 38 of the Mead book.
Two different parse trees for the string x,x,x

g S
AN 71N
S L 9 S, S
/N TN
S, S L

]
by % X

S

— Exp subT Exp subT Exp

— Exp subT Exp subT intT
— Exp subT intT subT intT
— intT subT intT subT intT
—10-4-3

-3

