
 4 3 2 1 0

Coding Style

White

Spacing

Coding solution adheres to all stylistic

best practices; code employs white space

to enhance readability throughout,

operators and conditional expressions can

be identified easily.

Logical blocks are indented

consistently and spacing of blocks

enhances readability. Complex

conditional expressions and use of

operators are mostly separated with
blank space to enhance readability.

Effective use of best stylistic practices.

Indentation and spacing make the

code mostly readable. Some

application of best stylistic

practices for the programming

language is in evidence.

Spacing and indentation

inconsistencies hinder readability.

Minimal attempt to use best stylistic

practices for programming language.

No attempt to use indentation or

spacing to enhance readability.

Best practices for stylistic

programming language

conventions are not in evidence.

Variable

Naming

Variable names clearly demonstrate their

purpose. Abbreviations are used sparingly

and appropriate for the domain. Single
letter variables are restricted to for loop

indexing. Proper and consistent use of

name styling (e.g. under_score,

camelCase, PascalCase). All constant

values are associated with a constant
variables name.

Effective variable names are used to

give indication of purpose. Occasional

abbreviations used only to shorten
variable names. Rare use of non-

named constants and single letter

variable names. Effective use of

consistent naming styles.

Adequate naming conventions.

Variables many be shortened for

brevity, moderate use of non-
named constants. Single letter

variables are found outside of

normal use cases. Instances of

inconsistent or inappropriate use

of naming styles.

Frequent use of abbreviations for

brevity, single letter variables, or

mnemonics for variable names. Non-
constant values are rarely assigned a

name. Regularly inconsistent

variable naming style.

Arbitrary or non-descriptive

naming of variables. No names

for constant values. Arbitrary
variable naming style.

Function

Naming

Function names clearly demonstrate their

purpose. Names utilize verb phrases to

describe functions action.

Abbreviations are used sparingly and
appropriate for the domain. Proper and

consistent use of name styling (e.g.

under_score, camelCase, PascalCase).

Effective function names are used to

give indication of purpose. Occasional

abbreviations used only to shorten

names. Effective use of consistent
naming styles.

Adequate function naming.

Naming tends to be too general or

have its meaning obscured by

artificial shortening for brevity.
Instances of inconsistent or

inappropriate use of naming styles.

Frequent use of abbreviations for

brevity, noun or verb phrases used.

Inconsistent and irregular

terminology. Regularly inconsistent
variable naming style.

Arbitrary or non-descriptive

function naming and arbitrary

naming style.

Logical

Blocks

Logical blocks are clearly delimited and

consistently positioned using the standard
for the language.

Logical blocks are positioned

consistently.
Logical blocks are occasionally

positioned consistently.
Logical blocks are regularly

positioned inconsistently.
Logical blocks are positioned

arbitrarily yet syntactically valid.

Solution Design

Imperative

Problem

Solving

Functions are used to encourage code

reuse and eliminate duplication. Global

variable use is only used when essential.
Each function has a single and well-

defined responsibility or purpose.

Effective use of functions for code

reuse and mitigate duplicate code.

Global variables may be present as
perceived optimizations, but not

essential. Some functions contain dual

purpose code.

Functions are used with occasional

instances of duplicate code. Global

variables are used to solve design
issues. Functions generally have

multiple responsibilities.

Functions are infrequently used with

reliance on duplicate code. Global

variables are used often. Functions
are used to group blocks of code

regardless of functionality. Evidence

of logical issues/misunderstandings

present in solution.

Functions are not used. Global

variables are used as a primary

means of maintaining state.
Code is frequently duplicated.

Logical constructs are frequently

misused resulting in redundant,

incorrect, or unreachable code.

OOP Concepts

Classes are used encapsulation to isolate

data and behavior. Each class has a well-

defined responsibility in the system. Best

practice software design principles and

OOP techniques are used to promote high
cohesion within a class and low coupling.

Classes demonstrate effective

encapsulation. Classes occasionally

have more than one responsibility.

OOP techniques are mostly applied for

high cohesion and low coupling
between classes.

Adequate class design.

Encapsulation is present, but

classes have multiple

responsibilities. OOP techniques

are used occasionally resulting in
lower cohesion and higher

coupling. Instances of exposing

private members as public present.

Classes are regularly designed to

incorporate functionality and state

for convenience rather than for

proper design. Global variables are

used to compensate for design
issues. OOP techniques are not used

resulting in low cohesion and high

coupling. Public members of often

use for the sake of ease or

misunderstanding.

Code does not follow any OOP

principles. If classes are present,

they are simply a container for

arbitrary state and functional

behavior. Result is code that
would be unmaintainable outside

of the present assignment.

Documentation

Source Code

Comments

Classes have header comments detailing
the role and responsibility of the class in

the given system. Instances of complex

algorithms or difficult sections of code are

clearly explained in documentation. Line

comments appear near the lines they
reference in a consistent position.

Function comments are used appropriately

give the target development language.

Block comments are only used when

appropriate.

Effective documentation is used to
formally explain the purpose of

functions and classes. Difficult lines of

code are also provided explanation.

Line and block comments are used

interchangeably. Line comment
placement can be inconsistent.

Adequate documentation is used to
explain the purpose of functions.

Classes are documented less

frequently. Complex lines are not

guaranteed to have any comment

explanation. Arbitrary comment
style and position.

Sporadic use documentation in the
program. Relegated to seemingly

arbitrary lines.

Functions, classes, and complex
algorithmic components are not

explained through

documentation.

External

Documentation

Language documentation standards and

documentation tools are used correctly

and to a high standard throughout the

solution.

Language documentation standards are

used in most cases, with effective use

of documentation tools.

Some attempt has been made to

follow language documentation

standards and to use

documentation tools.

No attempt has been made to follow

language documentation standards or

to use language specific

documentation tools.

The solution contains no

documentation to indicate its

purpose.

Correctness and Testing

Correctness

The solution produces correct results and

gracefully handles exceptional cases.

The solution produces correct results in

most use cases, but fails under some

exceptional cases.

The solution produces correct

results in the most common use

cases, but produces incorrect

results in some exceptional cases.

The solution runs, but crashes or

produces incorrect results in many or

all cases.

The solution does not compile,

or it always crashes when run.

Significant modifications would

be necessary to bring the

solution to a correct functioning
state.

Testing

The codebase is rigorously tested. The core functionality is thoroughly

tested.

Basic functionality is thoroughly

tested.

Basic functionality is only minimally

tested.

The correctness is not tested in

any capacity.

