
First Principles
GUI Bloopers Ch1



#1: Focus on Users and Task, not Tech

• Human-Centered Design (DOET)
• For whom is the software designed?

• Users
• Customers (not always the users)

• What activity does the software support?
• What are the skills and knowledge of your users?
• How do users conceptualize the data they interact with via software?
• Work preferences?

GUI Bloopers Ch 1 2



The Process of Understanding Users

• Business Decision
• Who are the users?
• What tasks to support?

• Empirical Investigation
• Develop User Profiles/Persona
• User Ability

• General Computer Knowledge, Task Knowledge, System knowledge
• Task Analysis

• Collaboration
• Bring users into the development process/team

GUI Bloopers Ch 1 3



Understanding Tasks
• What user tasks are relevant to the application’s function?
• Commonality and importance
• Task steps and results/output
• Where do users get task-related information and how is it used?
• Who performs the tasks?
• What tools are used?
• Challenges to task completion
• Task terminology
• Relationships between tasks
• Communication required for tasks

GUI Bloopers Ch 1 4



Software Exists to Serve a Larger Purpose

• Context of use matters!

GUI Bloopers Ch 1 5

VS.



#2: Consider Function First, Presentation Later

• DOES NOT MEAN “implement the functionality first and slap a 
user interface on when it’s done”.

• DOES MEAN understanding:
• What concepts will be visible to users?
• What data will they create, view, manipulate?
• What options, choices, settings, and controls will be provided?

GUI Bloopers Ch 1 6



The Conceptual Model

• An abstract explanation of a software’s function and what needs 
to be understood before using it.

• Focus on mapping functionality closely to user tasks.

• The cost of concepts:
• Novel concepts are not readily recognized and must be learned.
• Concept interactions in the software cause exponential growth in system 

complexity.

GUI Bloopers Ch 1 7



Building the Conceptual Model

• Objects/Actions Analysis
• What conceptual objects to expose to the user
• Permitted actions on the object
• Attributes (settings of the object)
• Relationships between objects

• Type hierarchy: an “is a” relationship
• Part/whole hierarchy: a ”part of” or “contains” relationship

• A lexicon of consistent terminology used in software and 
documentation

• Task scenarios

GUI Bloopers Ch 1 8



#3: Conform to the users’ view of the task

• Striving for “Naturalness”
• This aligns with domain expectations and the conceptual model

• Avoid things that are hard to learn and easy to forget
• Extra steps that seem unnecessary
• Arbitrary restrictions

• Use the lexicon to enforce your users' vocabulary
• Encapsulate program internals

• How the software works isn’t important

GUI Bloopers Ch 1 9



Complexity Reduction

• Sensible defaults
• Template or “canned” solutions
• Guided path-wizards
• Progressive disclosure

• Advanced features presented when needed

• Generic Commands
• Task-specific Design
• Customizability

• Risky option

GUI Bloopers Ch 1 10



#4 Design for the Common Case

• Common goals should be the easiest to achieve
• What is “common”?

• Don’t worry about edge cases.
• Takes development time and resources away from the common cases
• Forces the UI to support all possible cases

GUI Bloopers Ch 1 11

By Most Users By Few Users

Frequently Used Highly visible;
few clicks

Barely visible;
few clicks

Rarely Used Barely visible;
more clicks OK

Hidden;
more clicks



#5: Don’t Distract Users from Their Goals

• Don’t add extra problems for the user to solve

• Software should support problem solving in the target task 
domain

• Minimize or remove the need to problem solve in the domain of 
computer technology

• Users should not have to reason by elimination
• Features should be obvious

GUI Bloopers Ch 1 12



#6: Facilitate Learning

• Focus on outside-in thinking
• Users don’t know what you mean
• Knowledge in the world can guide them

• Ambiguity is the enemy
• Focus on the conceptual model
• Consistency

• Helps to build habits
• Difficult to implement
• User-centered view allows for predictability

• Tolerance for Mistakes/Errors (low-risk)

GUI Bloopers Ch 1 13



#7: Deliver Information not Just Data

• Data becomes information when processed, organized, and 
interpreted to provide meaning and context

• The presentation of information is critical
• Visual Order and Focus
• Scannability
• Match the medium
• Attention to detail

• The screen belongs to the user
• Do not ”take” controls, move, or rearrange data without user permission
• Changes to the display should be localized as much as possible

GUI Bloopers Ch 1 14



#8: Design for Responsiveness

• This does not mean a ”responsive” design for different screen 
sizes.

• Focuses on perceived speed
• A requested action may take time

• Acknowledge an action immediately
• Provide feedback regarding the status
• Indicate a “busy” status
• Allow the action to be cancelled
• DO NOT BLOCK THE UI!

GUI Bloopers Ch 1 15



#9: Try it out on users, then fix it

• We all are worried to show people things that aren’t “done”, 
”perfect”, or ”in progress”.

• Software is never really “done”!
• Let people see and try it.
• Take feedback and use it to improve the software.
• Make user testing a “safe” event and activity.

• Be a passive observer.
• It isn’t personal! ☺
• Without feedback, how do we know we’re making the “right” product?

GUI Bloopers Ch 1 16


	Slide 1: First Principles
	Slide 2: #1: Focus on Users and Task, not Tech
	Slide 3: The Process of Understanding Users
	Slide 4: Understanding Tasks
	Slide 5: Software Exists to Serve a Larger Purpose
	Slide 6: #2: Consider Function First, Presentation Later
	Slide 7: The Conceptual Model
	Slide 8: Building the Conceptual Model
	Slide 9: #3: Conform to the users’ view of the task
	Slide 10: Complexity Reduction
	Slide 11: #4 Design for the Common Case
	Slide 12: #5: Don’t Distract Users from Their Goals
	Slide 13: #6: Facilitate Learning
	Slide 14: #7: Deliver Information not Just Data
	Slide 15: #8: Design for Responsiveness
	Slide 16: #9: Try it out on users, then fix it

