
Viewing

So far…

Focused on creating 3D geometric shapes

The Goal
Turn that object into a flat image

The Goal

Turn that object into a flat image

The Goal
Turn that object into a flat image

The Concept

• We have a display

The Concept

• We have a display
• Acts like a window into our scene
• The scene is behind the display

The Concept

• We have a display
• Acts like a window into our scene
• The scene is behind the display

The Concept

• We have a display
• Acts like a window into our scene
• The scene is behind the display
• Project the object onto the display

The Concept

• We have a display
• Acts like a window into our scene
• The scene is behind the display
• Project the object onto the display
• How?

A New Coordinate Frame

A New Coordinate Frame

• Need to identify an origin

A New Coordinate Frame

• Need to identify an origin
• Need basis vectors

A New Coordinate Frame

• Need to identify an origin
• Need basis vectors

A New Coordinate Frame

• Need to identify an origin
• Need basis vectors

A New Coordinate Frame

• Need to identify an origin
• Need basis vectors

A New Coordinate Frame

• Need to identify an origin
• Need basis vectors

The Eye/Camera Coordinate Frame

The Eye/Camera Coordinate Frame

View Volume

The Eye/Camera Coordinate Frame

• View volume is what your can see
• Only things in the view volume are

visible

View Volume

View Transformations

Model Frame

View Transformations

Model Frame World/Object Frame

Model
Transformation

Model
Transformation

View Transformations

Model Frame World/Object Frame

Model
Transformation

Model
Transformation

Eye/Camera Frame

View
Transformation

Projection

Eye/Camera Frame

Projection
Eye/Camera Frame

View Volume

Defining the View Volume

View Volume

Defining the View Volume

• Left and Right (X values)

View Volume

LL R

Defining the View Volume

• Left and Right (X values)
• Top and Bottom (Y Values)

View Volume

L

B

T

L R

B

T

Defining the View Volume

• Left and Right (X values)
• Top and Bottom (Y Values)
• Near and Far (Z Values)
• In most cases Near is NOT Zero

View Volume

L R

B

T

F N

Defining the View Volume

• Left and Right (X values)
• Top and Bottom (Y Values)
• Near and Far (Z Values)
• In most cases Near is NOT Zero

• Want to convert this to a
more standard coordinate
system

View Volume

L R

B

T

F N

Canonical View Volume

• All directions go from -1 to 1
• Origin is center of the cube
• 2x2x2

• Want to convert from
Eye/Camera Frame to the
Canonical View Volume
• Need a projection

transformation

Orthographic Projection

Orthographic Projection

View/Camera

Orthographic Projection

View/Camera

L R

B

TF
N

Orthographic Projection

View/Camera

L

R

B

TF

N

Canonical View Volume

Projection
Transformation

Orthographic Projection

View/Camera

L

R

B

TF

N

Canonical View Volume

Projection
Transformation

-1

-1

-1

1

1

1

Orthographic Projection Matrix

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

x
y

z

1

x'
y’

z’

1

=

Orthographic Projection Matrix

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

x
y

z

1

x'
y’

z’

1

=

Camera FrameCanonical
View Volume

Frame

Orthographic Projection Matrix

?
?

?

0

?
?

?

0

?
?

?

0

?
?

?

1

x
y

z

1

x'
y’

z’

1

=

Camera FrameCanonical
View Volume

Frame

Orthographic Projection Matrix

• No rotation
• Need scaling
• Need Transformation

?
0

0

0

0
?

0

0

0
0

?

0

?
?

?

1

x
y

z

1

x'
y’

z’

1

=

Camera FrameCanonical
View Volume

Frame

Orthographic Projection Matrix
2

𝑟 − 𝑙
0

0

0

0

0

0

0
0

0 1

x
y

z

1

x'
y’

z’

1

=

Camera FrameCanonical
View Volume

Frame 2
𝑡 − 𝑏

2
𝑓 − 𝑛

𝑙 + 𝑟
𝑟 − 𝑙
𝑡 + 𝑏
𝑡 − 𝑏
𝑓 + 𝑛
𝑓 − 𝑛-

-

-

-

• No rotation
• Need scaling
• Normalize the values to fit into the range (-1 to 1)

• Need transformation
• Move the camera origin to the center of the view volume

Properties of Orthographic Projection
• All parallel lines remain parallel

• Objects don’t lose scale
• close/far same size

• Useful for design renderings

• Not good when you want a scene to look
natural

Perspective Projection

Perspective Viewing

• Projectors are no longer parallel (Orthographic Viewing)
• Instead, they converge on a Center of Projection (COP)

The Concept

The Concept

A Different Viewing Volume

A Different Viewing Volume

Frustrum

A Different Viewing Volume

A Different Viewing Volume

Prospective Projection

Perspective
Transformation

Prospective Projection

Perspective
Transformation

Prospective Projection

Perspective
Transformation

Perspective Transformation

Perspective Transformation

Perspective Transformation

Perspective Transformation

Perspective Transformation

Py

Pz

Perspective Transformation

Py

Pz

For all points along the line Py/Pz is…

Perspective Transformation

Py

Pz

For all points along the line Py/Pz is the same.

Perspective Transformation

Py

Pz

For all points along the line Py/Pz is the same.
The tangent of the angle!

Perspective Transformation

Py

Pz

For all points along the line Py/Pz is the same.
The tangent of the angle!

P’y

Perspective Transformation

Py

Pz

P’y = (Py/Pz)n

P’y

Perspective Transformation

Py

Pz

P’y = (Py/Pz)n

P’y

P’x = (Px/Pz)n

Perspective Transformation

Py

Pz

Written as a vector:

P’y

P’x
P’y

= Px
Py

𝑛
𝑃𝑧

Homogeneous Coordinates

• Initially we said that the last component was going to be 1 for points
and 0 for vectors

Px
Py
Pz
1

Homogeneous Coordinates

• Initially we said that the last component was going to be 1 for points
and 0 for vectors
• Now we will extend the definition to use that component to help us

with our perspective transformation

≡

𝑤Px
𝑤 Py
𝑤 Pz
𝑤

Px
Py
Pz
1

Homogeneous Coordinates

• Initially we said that the last component was going to be 1 for points
and 0 for vectors
• Now we will extend the definition to use that component to help us

with our perspective transformation
• If I scale Px, Py, and Pz by some alpha value I can represent the same

position in 3D space

≡

𝑤Px
𝑤 Py
𝑤 Pz
𝑤

Px
Py
Pz
1

Homogeneous Coordinates

• Initially we said that the last component was going to be 1 for points
and 0 for vectors
• Now we will extend the definition to use that component to help us

with our perspective transformation
• If I scale Px, Py, and Pz by some alpha value I can represent the same

position in 3D space

≡

𝑤Px
𝑤 Py
𝑤 Pz
𝑤

Px
Py
Pz
1

≡

n*Px/Pz
n*Py/Pz

?
1

P’x
P’y
P’z
1

Homogeneous Coordinates

• Initially we said that the last component was going to be 1 for points
and 0 for vectors
• Now we will extend the definition to use that component to help us

with our perspective transformation
• If I scale Px, Py, and Pz by some alpha value I can represent the same

position in 3D space

≡

𝑤Px
𝑤 Py
𝑤 Pz
𝑤

Px
Py
Pz
1

≡

n*Px/Pz
n*Py/Pz

?
1

P’x
P’y
P’z
1

≡

n*Px
n*Py

?
Pz

Perspective Transformation

≡

n*Px/Pz
n*Py/Pz

?
1

P’x
P’y
P’z
1

≡

n*Px
n*Py

?
Pz

Perspective Transformation

≡

n*Px/Pz
n*Py/Pz

?
1

P’x
P’y
P’z
1

≡

n*Px
n*Py

?
Pz

≡

?
?
?
?

P’x
P’y
P’z
1

Px
Py
Pz
1

?
?
?
?

?
?
?
?

?
?
?
?

Perspective Transformation

≡

n*Px/Pz
n*Py/Pz

?
1

P’x
P’y
P’z
1

≡

n*Px
n*Py

?
Pz

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0
?
1

0
0
?
0

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0
?
1

0
0
?
0

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Pz = n

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Pz = n P’z = ((n+f)Pz – fn) / Pz

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Pz = n P’z = ((n+f)Pz – fn) / Pz

= (n+f) – fn / Pz

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Pz = n P’z = ((n+f)Pz – fn) / Pz

= (n+f) – fn / Pz
= (n+f) – f

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Pz = n P’z = ((n+f)Pz – fn) / Pz

= (n+f) – fn / Pz
= (n+f) – f
= n

Perspective Transformation

≡

n
0
0
0

P’x
P’y
P’z
1

Px
Py
Pz
1

0
n
0
0

0
0

n+f
1

0
0

-fn
0

Pz = n P’z = ((n+f)Pz – fn) / Pz

= (n+f) – fn / Pz
= (n+f) – f
= n

Pz = f P’z = ((n+f)Pz – fn) / Pz

= (n+f) – fn / Pz
= (n+f) – n
= f

Perspective Projection

Perspective Projection

Perspective Projection

Perspective Projection

Projection

