
Viewing



So far…

Focused on creating 3D geometric shapes
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The Concept

• We have a display
• Acts like a window into our scene
• The scene is behind the display
• Project the object onto the display
• How?
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The Eye/Camera Coordinate Frame

• View volume is what your can see
• Only things in the view volume are

visible

View Volume
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Projection
Eye/Camera Frame
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Defining the View Volume

• Left and Right (X values)
• Top and Bottom (Y Values)
• Near and Far (Z Values)
• In most cases Near is NOT Zero

• Want to convert this to a 
more standard coordinate 
system

View Volume
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Canonical View Volume

• All directions go from -1 to 1
• Origin is center of the cube
• 2x2x2

• Want to convert from 
Eye/Camera Frame to the 
Canonical View Volume
• Need a projection 

transformation
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Orthographic Projection Matrix
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Orthographic Projection Matrix

• No rotation
• Need scaling
• Need Transformation

?
0

0

0

0
?

0

0

0
0

?

0

?
?

?

1

x
y

z

1

x'
y’

z’

1

=

Camera FrameCanonical
View Volume

Frame



Orthographic Projection Matrix
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• No rotation
• Need scaling
• Normalize the values to fit into the range (-1 to 1)

• Need transformation
• Move the camera origin to the center of the view volume



Properties of Orthographic Projection
• All parallel lines remain parallel

• Objects don’t lose scale
• close/far same size

• Useful for design renderings

• Not good when you want a scene to look 
natural



Perspective Projection



Perspective Viewing

• Projectors are no longer parallel (Orthographic Viewing)
• Instead, they converge on a Center of Projection (COP)
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Perspective Transformation
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Perspective Transformation
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Perspective Transformation
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Written as a vector:
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