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What is a Matrix?

• For us, a collection of scalar values 
arranged in a multi-dimensional array 
(grid)
• The dimension of a matrix is usually 

represented as m x n (m-by-n) where m 
is the number or rows, and n is the 
number of columns
• In computer graphics we deal mostly 

with square matrices of dimensions:
• 2x2, 3x3, and 4x4
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Matrix Operations - Transpose

• Sometimes we need to change the 
order of the values in the matrix
• We may do this as it is part of an 

operational formulation
• It may also be necessary to provide the 

correct representation of the data to 
WebGL which take column major order 
data
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Matrix Operations - Inverse

• How to calculate the inverse of a matrix 
by hand is out of the scope of this class
• If you are curious (Gauss-Jordan Method)
• Online Calculator

• MV.js provides a function called inverse

• Be careful! If the determinant of the 
matrix is zero, there is NO inverse
• MV.js provides a determinant function 

called det
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https://www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html
https://matrixcalc.org/en/


Matrix Operations – Matrix Addition

• A matrix can be added to another 
matrix if the number of rows and 
columns are the same for both matrices
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Matrix Operations – Matrix Addition

• A matrix can be added to another matrix if the number of rows and 
columns are the same for both matrices
• Values at matching element positions are added with each other
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Matrix Operations – Scalar Multiplication

• A matrix can be multiplied by a single scalar value

𝛼 = 5

16

b00

b10

b01

b11
B =



Matrix Operations – Scalar Multiplication

• A matrix can be multiplied by a single scalar value
• For this we simply multiply each element in the matrix by the scalar

𝛼 = 5
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Matrix Operations – Matrix Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows 
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix

a00

a10

a01

a11
A =

b00

b10

b01

b11
B =

20
2x2 2x2

Multiply?



Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
• When you multiply two matrices or a 

matrix and a vector, you can determine 
the output dimensions of the product
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
• When you multiply two matrices or a 

matrix and a vector, you can determine 
the output dimensions of the product

30

A = B =3x3 3x1

A B = ??



Matrix Operations - Multiplication
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Matrix Operations - Multiplication
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
• When you multiply two matrices or a 

matrix and a vector, you can determine 
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Matrix Operations - Multiplication

• A matrix can be multiplied by another 
matrix or a vector if the number of rows
in the second vector or matrix are equal 
to the number of columns in the first 
matrix
• When you multiply two matrices or a 

matrix and a vector, you can determine 
the output dimensions of the product
• MATRIX MULTIPLICATION IS NOT 

COMMUTATIVE
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Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) 
by the columns of the multiplier (right hand)
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Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) 
by the columns of the multiplier (right hand)
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Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) 
by the columns of the multiplier (right hand)
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Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) 
by the columns of the multiplier (right hand)
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Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) 
by the columns of the multiplier (right hand)
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Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) 
by the columns of the multiplier (right hand)
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The Identity Matrix

• A square mxn (m-by-n) matrix where all the values along the diagonal 
are 1’s and the rest are 0’s.
• Usually shown as a capital I
• When used in multiplication it is 

like multiplying a scalar by 1
• If A is an mxn matrix:
• ImA = AIn = A
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Why Matrices in CG?

• Matrices allow for transformations of the vectors

• This includes the ability to change coordinate systems
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Changing Coordinate Systems

• Suppose we have a vector w with the following 
column matrix representation in our basis
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Changing Coordinate Systems

• Suppose we have a vector w with the following 
column matrix representation in our basis
• Suppose we need to convert w to a different system 

x’, y’, z’ defined by:
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Changing Coordinate Systems

• Suppose we have a vector w with the following 
column matrix representation in our basis
• Suppose we need to convert w to a different system 

x’, y’, z’ defined by:

• To create the transformation matrix (T), we take the 
transpose of the matrix and then the inverse of the 
transpose (MT)-1
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Changing Coordinate Systems

• The resulting matrix is now:

• The new representation of w is expressed by Ta:
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Changing Coordinate Systems

• What is interesting to note about T is that the columns represent the 
original x, y, and z in the new coordinate system x’, y’, z’. 
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What about Homogeneous Coordinates?

• Like before, we have a series of basis vectors but also a point.
• Assume new basis vectors and the reference point will also change:
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What about Homogeneous Coordinates?

• Like before, we have a series of basis vectors but also a point.
• Assume new basis vectors and the reference point will also change:
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What about Homogeneous Coordinates?

• Like before, we have a series of basis vectors but also a point.
• Assume new basis vectors and the reference point will also change
• Remember that we are interested in the Transpose of the matrix
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What about Homogeneous Coordinates?

• Like before, we have a series of basis vectors but also a point.
• Assume new basis vectors and the reference point will also change
• Remember that we are interested in the Transpose of the matrix
• Last, we need the inverse of MT
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What about Homogeneous Coordinates?

• Like before, we have a series of basis vectors but also a point.
• Assume new basis vectors and the reference point will also change
• Remember that we are interested in the Transpose of the matrix
• Last, we need the inverse of MT

• Now we can convert P0 to Q0
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Switching Coordinate Frames Easily
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Switching Coordinate Frames Easily
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Switching Coordinate Frames Easily
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