Matrices

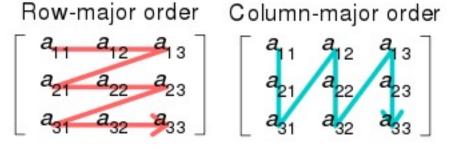
1

What is a Matrix?

- For us, a collection of scalar values arranged in a multi-dimensional array (grid)
- The dimension of a matrix is usually represented as m x n (m-by-n) where m is the number or rows, and n is the number of columns
- In computer graphics we deal mostly with square matrices of dimensions:
 - 2x2, 3x3, and 4x4

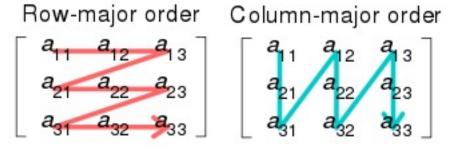
$$= \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}$$

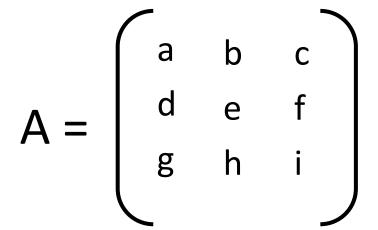
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data
 Row-major order Column-major order



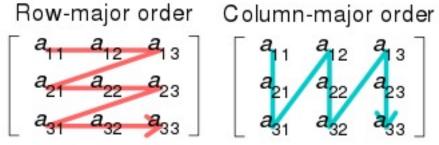
a₀₀ a₀₁ $a_{02} a_{03}$ a₁₀ a₁₁ $a_{12} a_{13}$ a₂₀ a₂₁ a₂₂ a₂₃ a₃₀ a₃₁ a₃₂ a₃₃

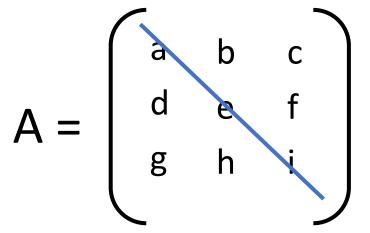
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data



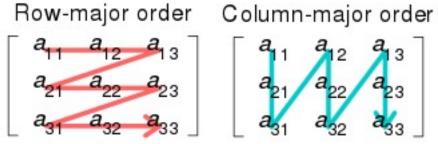


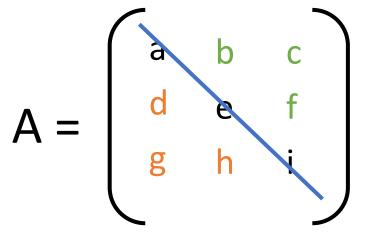
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data



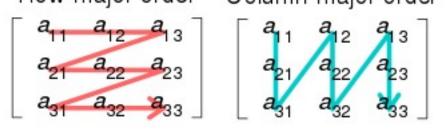


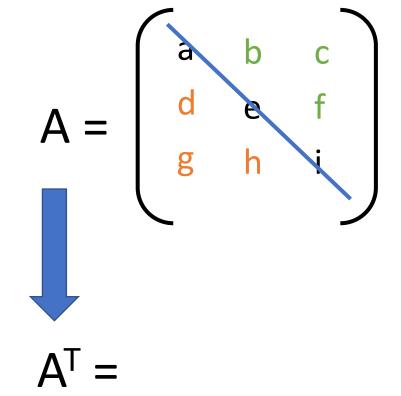
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data



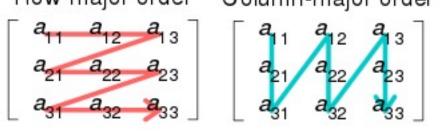


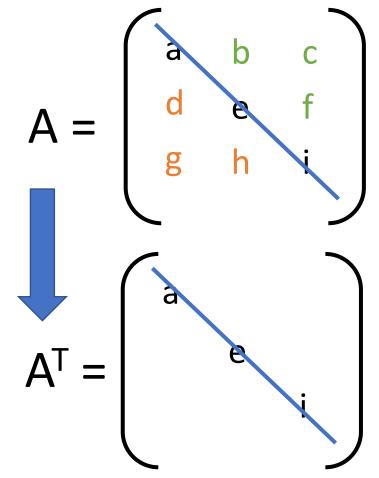
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data
 Row-major order Column-major order



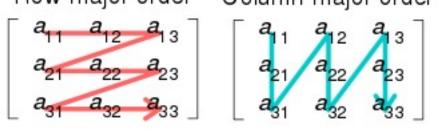


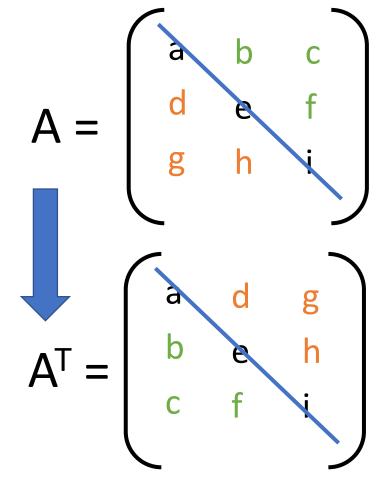
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data
 Row-major order Column-major order



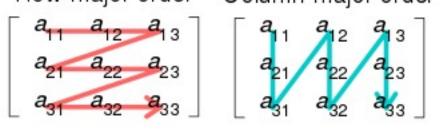


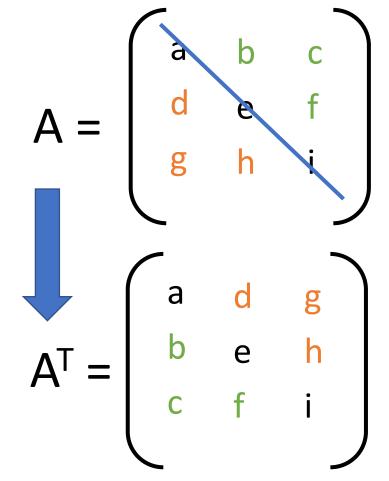
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data
 Row-major order Column-major order



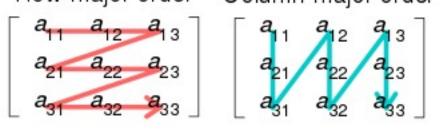


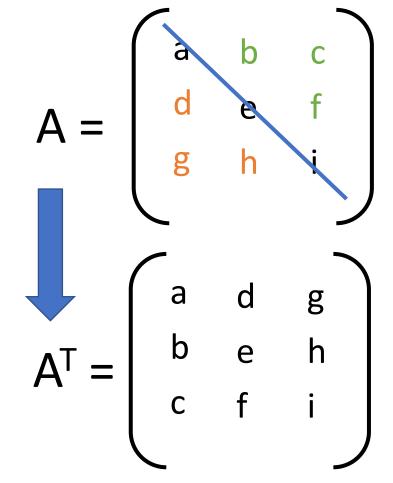
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data
 Row-major order Column-major order





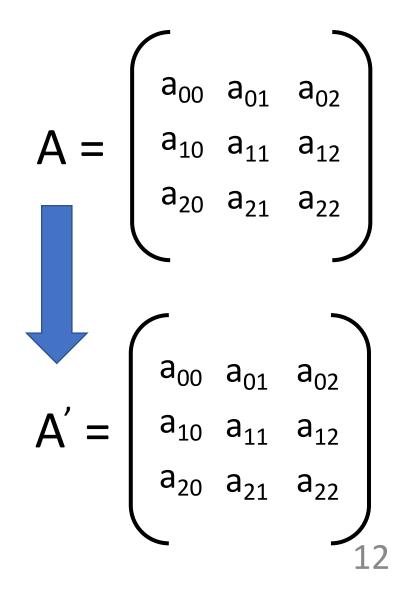
- Sometimes we need to change the order of the values in the matrix
- We may do this as it is part of an operational formulation
- It may also be necessary to provide the correct representation of the data to WebGL which take column major order data
 Row-major order Column-major order





Matrix Operations - Inverse

- How to calculate the inverse of a matrix by hand is out of the scope of this class
 - If you are curious (Gauss-Jordan Method)
 - Online Calculator
- MV.js provides a function called *inverse*
- Be careful! If the determinant of the matrix is zero, there is NO inverse
 - MV.js provides a determinant function called *det*



Matrix Operations – Matrix Addition

• A matrix can be added to another matrix if the number of rows and columns are the same for both matrices

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \quad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$

Matrix Operations – Matrix Addition

 A matrix can be added to another matrix if the number of rows and columns are the same for both matrices

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \quad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$
$$2x2 \qquad 2x2$$

Matrix Operations – Matrix Addition

- A matrix can be added to another matrix if the number of rows and columns are the same for both matrices
- Values at matching element positions are added with each other

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \quad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix} \quad A + B = \begin{pmatrix} a_{00} + b_{00} & a_{01} + b_{01} \\ a_{10} + b_{10} & a_{11} + b_{11} \end{pmatrix}$$
$$2x2 \qquad 2x2$$

Matrix Operations – Scalar Multiplication

• A matrix can be multiplied by a single scalar value

$$\alpha = 5 \qquad \qquad \mathsf{B} = \begin{bmatrix} \mathsf{b}_{00} & \mathsf{b}_{01} \\ \mathsf{b}_{10} & \mathsf{b}_{11} \end{bmatrix}$$

Matrix Operations – Scalar Multiplication

- A matrix can be multiplied by a single scalar value
- For this we simply multiply each element in the matrix by the scalar

$$\alpha = 5 \qquad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$
$$\alpha B = \begin{pmatrix} 5b_{00} & 5b_{01} \\ 5b_{10} & 5b_{11} \end{pmatrix}$$

Matrix Operations – Matrix Multiplication

• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$

2x2

• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$

2x2

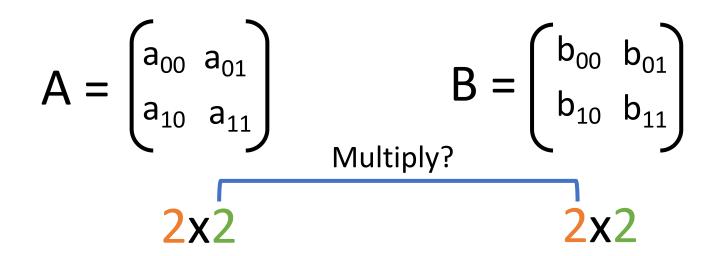
2x2

• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix

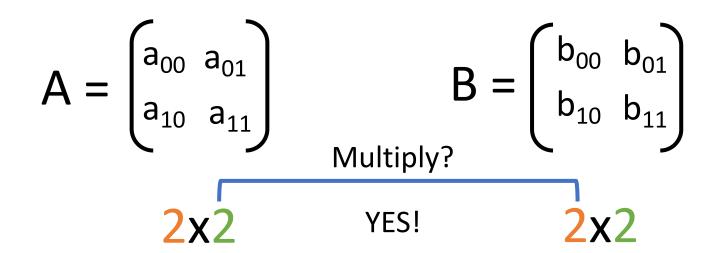
$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}$$

Multiply?
$$2x2 \qquad 2x2$$

• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix



• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix



• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad B = \begin{pmatrix} b_{10} & b_{11} \end{pmatrix}$$

2x2

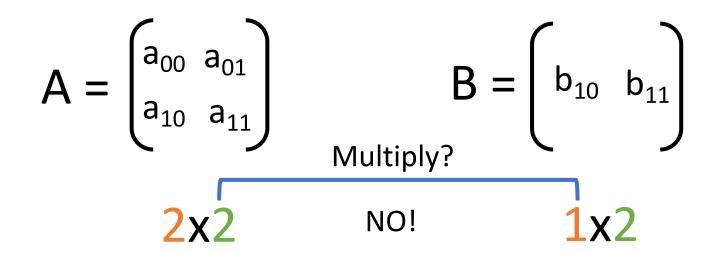
1x2

• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad B = \begin{pmatrix} b_{10} & b_{11} \end{pmatrix}$$

Multiply?
$$\frac{2x2}{1x2}$$

• A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix



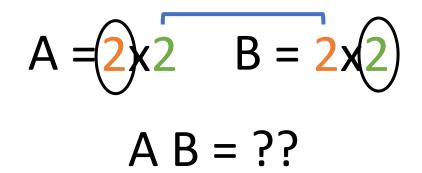
- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product

- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product

$$A = 2x^{2} \quad B = 2x^{2}$$

 $A \quad B = ??$

- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product



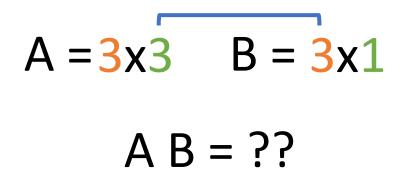
- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product

$$A = (2)x^2 \quad B = 2x^2$$
$$\Delta B = 2x^2$$

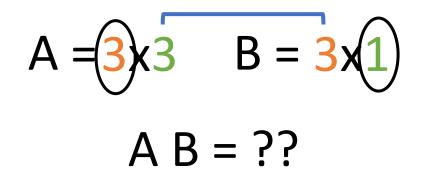
- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product

$$A = 3x3$$
 $B = 3x1$
 $A = 3x3$ $B = 3x1$

- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product



- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product



- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product

$$A = 3x3 \quad B = 3x1$$
$$A = 3x1$$

- A matrix can be multiplied by another matrix or a vector if the number of rows in the second vector or matrix are equal to the number of columns in the first matrix
- When you multiply two matrices or a matrix and a vector, you can determine the output dimensions of the product
- MATRIX MULTIPLICATION IS NOT COMMUTATIVE

A = 3x3 B = 3x1A B != B A In this case not possible A = 3x3 B = 3x3A B != B A In this case different answer

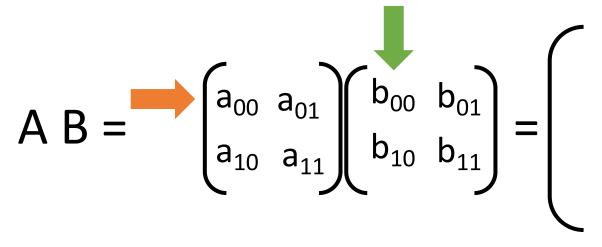
Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) by the columns of the multiplier (right hand)

AB =
$$\begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} \\ b_{10} & b_{11} \end{pmatrix} = \begin{pmatrix}$$

Matrix Multiplication Example

• Multiplication is done using the rows of the multiplicand (left hand) by the columns of the multiplier (right hand)



$$A B = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix} = \begin{bmatrix} a_{00}^* b_{00} + a_{01}^* b_{10} \\ a_{01}^* b_{10} \end{bmatrix}$$

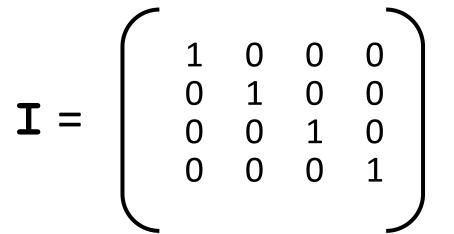
$$A B = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix} = \begin{bmatrix} a_{00}^* b_{00} + a_{01}^* b_{10} & a_{00}^* b_{01} + a_{01}^* b_{11} \\ a_{00}^* b_{01} + a_{01}^* b_{11} \end{bmatrix}$$

$$A B = \left[\begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix} = \left[\begin{pmatrix} a_{00}^* b_{00} + a_{01}^* b_{10} & a_{00}^* b_{01} + a_{01}^* b_{11} \\ a_{10}^* b_{00} + a_{11}^* b_{10} & a_{00}^* b_{01} + a_{01}^* b_{11} \end{pmatrix} \right]$$

$$A B = \left(\begin{array}{c} a_{00} & a_{01} \\ a_{10} & a_{11} \end{array} \right) \left(\begin{array}{c} b_{00} & b_{01} \\ b_{10} & b_{11} \end{array} \right) = \left(\begin{array}{c} a_{00} * b_{00} + a_{01} * b_{10} & a_{00} * b_{01} + a_{01} * b_{11} \\ a_{10} * b_{00} + a_{11} * b_{10} & a_{10} * b_{01} + a_{11} * b_{11} \end{array} \right)$$

The Identity Matrix

- A square mxn (m-by-n) matrix where all the values along the diagonal are 1's and the rest are 0's.
- Usually shown as a capital **I**
- When used in multiplication it is like multiplying a scalar by 1
- If A is an mxn matrix:
 - $I_m A = AI_n = A$



Why Matrices in CG?

- Matrices allow for transformations of the vectors
- This includes the ability to change coordinate systems

• Suppose we have a vector *w* with the following column matrix representation in our basis

$$w = x + 2y + 3z$$

$$a = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x \text{ component}$$

$$z \text{ component}$$

- Suppose we have a vector *w* with the following column matrix representation in our basis
- Suppose we need to convert w to a different system
 x', y', z' defined by:

$$w = x + 2y + 3z$$

$$a = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x \text{ component}$$

$$y \text{ component}$$

$$z \text{ component}$$

x' = x y' = x + yz' = x + y + z

- Suppose we have a vector w with the following column matrix representation in our basis
- Suppose we need to convert w to a different system
 x', y', z' defined by:

w = x + 2y + 3z $a = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x \text{ component}$ z component

• To create the transformation matrix (T), we take the transpose of the matrix and then the inverse of the transpose (M^T)⁻¹

- The resulting matrix is now: W = x + 2y + 3z $M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = T \qquad a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}^{x \text{ component}}_{z \text{ component}}$
 - The new representation of *w* is expressed by Ta:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 3 \\ 3 \end{pmatrix} \qquad w = -x - y + 3z$$

46

• What is interesting to note about T is that the columns represent the original x, y, and z in the new coordinate system x', y', z'.

$$T = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

- Like before, we have a series of basis vectors but also a point.
- Assume new basis vectors and the reference point will also change:

- Like before, we have a series of basis vectors but also a point.
- Assume new basis vectors and the reference point will also change:

$$x' = x$$

$$y' = x + y$$

$$z' = x + y + z$$

$$Q_0 = x + 2y + 3z + P_0$$

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$

- Like before, we have a series of basis vectors but also a point.
- Assume new basis vectors and the reference point will also change
- Remember that we are interested in the Transpose of the matrix

$$x' = x$$

$$y' = x + y$$

$$z' = x + y + z$$

$$Q_0 = x + 2y + 3z + P_0$$

$$M^{T} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Like before, we have a series of basis vectors but also a point.
- Assume new basis vectors and the reference point will also change
- Remember that we are interested in the Transpose of the matrix
- Last, we need the inverse of M^T

$$\begin{array}{c} x' = x \\ y' = x + y \\ z' = x + y + z \\ Q_0 = x + 2y + 3z + P_0 \end{array} \qquad (M^{\mathsf{T}})^{-1} = \left(\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

- Like before, we have a series of basis vectors but also a point.
- Assume new basis vectors and the reference point will also change
- Remember that we are interested in the Transpose of the matrix
- Last, we need the inverse of M^T
- Now we can convert P_0 to Q_0 $(Q_0 = x + 2y + 3z + P_0)$

$$(\mathsf{M}^{\mathsf{T}})^{-1}\mathsf{P}_{0} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \mathsf{Q}_{0}$$

Switching Coordinate Frames Easily

$$(\mathsf{M}^{\mathsf{T}})^{-1}\mathsf{P}_{0} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \mathsf{Q}_{0}$$
$$\begin{pmatrix} (\mathsf{M}^{\mathsf{T}})^{-1} \mathsf{Q}_{0} = \mathsf{M}^{\mathsf{T}}\mathsf{Q}_{0} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix} = \mathsf{P}_{0}$$

53

Switching Coordinate Frames Easily

$$(\mathsf{M}^{\mathsf{T}})^{-1}\mathsf{P}_{0} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \mathsf{Q}_{0}$$
$$((\mathsf{M}^{\mathsf{T}})^{-1})\mathsf{Q}_{0} = \mathsf{M}^{\mathsf{T}}\mathsf{Q}_{0} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \mathsf{P}_{0}$$

54

Switching Coordinate Frames Easily

$$(\mathsf{M}^{\mathsf{T}})^{-1}\mathsf{P}_{0} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \mathsf{Q}_{0} \quad \mathsf{Points}$$

$$\mathsf{Vector \ component \ or \ points}$$

$$((\mathsf{M}^{\mathsf{T}})^{-1})\mathsf{Q}_{0} = \mathsf{M}^{\mathsf{T}}\mathsf{Q}_{0} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \mathsf{P}_{0} \qquad 55$$