- Scalars
 - One dimensional values
 - Can be real or complex

- Scalars
 - One dimensional values
 - Can be real or complex

- Scalars
 - One dimensional values
 - Can be real or complex

- Scalars
 - One dimensional values
 - Can be real or complex

- Scalars
 - One dimensional values
 - Can be real or complex

- Scalars
 - One dimensional values
 - Can be real or complex

Points

- A location in space
- No size
- No direction

Points

- A location in space
- No size
- No direction
- We prefer them with respect to some other context...(more on that later)

Points

- A location in space
- No size
- No direction
- We prefer them with respect to some other context...(more on that later)
- But for now, we'll ignore that

- Have a direction
- Have magnitude
- A few basic concepts:

- Have a direction
- Have magnitude
- A few basic concepts:
 - The blue and green vector are the same

- Have a direction
- Have magnitude
- A few basic concepts:
 - The blue and green vector are the same
 - The orange arrow is an inverse to the blue and green

- We don't have the concept of locations or distance
- What do we know without that context?

- We don't have the concept of locations or distance
- What do we know without that context?
 - We can create new vectors using scalar-vector multiplication
 - Has a scaling effect (and inverse if we use negative values)

u 2u u .5u

- We don't have the concept of locations or distance
- What do we know without that context?
 - We can create new vectors using scalar-vector multiplication
 - Has a scaling effect (and inverse if we use negative values)
 - We can create new vectors using **vector-vector addition**
 - Head-tail axiom

- We don't have the concept of locations or distance
- What do we know without that context?
 - We can create new vectors using scalar-vector multiplication
 - Has a scaling effect (and inverse if we use negative values)
 - We can create new vectors using **vector-vector addition**
 - Head-tail axiom

- We don't have the concept of locations or distance
- What do we know without that context?
 - We can create new vectors using scalar-vector multiplication
 - Has a scaling effect (and inverse if we use negative values)
 - We can create new vectors using **vector-vector addition**
 - Head-tail axiom

- We don't have the concept of locations or distance
- What do we know without that context?
 - We can create new vectors using scalar-vector multiplication
 - Has a scaling effect (and inverse if we use negative values)
 - We can create new vectors using **vector-vector addition**
 - Head-tail axiom

- We don't have the concept of locations or distance
- What do we know without that context?
 - We can create new vectors using scalar-vector multiplication
 - Has a scaling effect (and inverse if we use negative values)
 - We can create new vectors using **vector-vector addition**
 - Head-tail axiom

u + v = = v + u

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.
 - **Point-point subtraction** can provide a vector between two points

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.
 - **Point-point subtraction** can provide a vector between two points

- Now...we add the point to vector space!
- With our new object we can perform additional operations:
 - **Point-vector addition** where the vector can displace a point and arrive at a new point.
 - **Point-point subtraction** can provide a vector between two points
 - **Careful!** The direction of the vector depends on the order of the subtraction.

• Our point can serve as an origin to a set of vectors

- Our point can serve as an origin to a set of vectors
- These basis vectors serve as our coordinate **frame**

- Our point can serve as an origin to a set of vectors
- These basis vectors serve as our coordinate **frame**
- Adding in some Euclidean coordinates...

- Our point can serve as an origin to a set of vectors
- These basis vectors serve as our coordinate **frame**
- Adding in some Euclidean coordinates...
- We can represent vectors using three scalar values
 - Each vector has a x, y, and z component
 - These components are multiplied by each base vector

- Our point can serve as an origin to a set of vectors
- These basis vectors serve as our coordinate **frame**
- Adding in some Euclidean coordinates...
- We can represent vectors using three scalar values
 - Each vector has a x, y, and z component
 - These components are multiplied by each base vector
 - The result is a new vector originating from the origin

$$v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} x \text{ component} \qquad v^{T} = (1, 1, 0)$$

z component

Frames Representations

- This frame representation is of the clip coordinates we have been using in class
- However, we can have multiple independent frames
- Each frame can have its own coordinates
- You CANNOT work with vectors in different coordinate systems unless they are translated to the same coordinate space
- We'll get deeper into this when we talk about matrices

- Represented as |v| in the book
- The magnitude is the length of the vector

- Represented as |v| in the book
- The magnitude is the length of the vector
- Visually we can see it forms a very familiar shape

- Represented as |v| in the book
- The magnitude is the length of the vector
- Visually we can see it forms a very familiar shape
- We can use the Pythagorean Theorem!

In 2D:
$$|v| = \sqrt{v_x^2 + v_y^2}$$

- Represented as |v| in the book
- The magnitude is the length of the vector
- Visually we can see it forms a very familiar shape
- We can use the Pythagorean Theorem!

In 2D:
$$|v| = \sqrt{v_x^2 + v_y^2}$$

In 3D:
$$|v| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Vector Math - Normalization

- Normalizing a vector create a **unit vector** meaning the length/magnitude of the vector is 1
 - Sometimes referred to as a direction vector

Vector Math - Normalization

- Normalizing a vector create a **unit vector** meaning the length/magnitude of the vector is 1
 - Sometimes referred to as a direction vector
- Represented as $\hat{v} = v / |v|$
 - Note that |v| is a scalar value
 - Scalar-vector multiplication
 - $\hat{v} = v * (1 / |v|)$

- One form of vector multiplication
- $u \cdot v = u_x v_x + u_y v_y + u_z v_z$

- One form of vector multiplication
- $u \cdot v = u_x v_x + u_y v_y + u_z v_z$
 - $u \cdot v$ will be a scalar value
- Note: $u \cdot u$ is the squared length of the vector

U

V

- One form of vector multiplication
- $u \cdot v = u_x v_x + u_y v_y + u_z v_z$
 - $u \cdot v$ will be a scalar value
- Note: $u \cdot u$ is the squared length of the vector

V

- Can be used to find the length of the projection of *u* onto *v*
 - If |v| = 1, $d = u \cdot v$
 - else d = $(u \cdot v) / |v|$

- Can be calculated a second way
- $u \cdot v = |u| |v| \cos\theta$
- Note if u and v are both unit vectors this simplifies to:
 - $u \cdot v = \cos\theta$

- If two vectors are:
 - orthogonal (perpendicular): $u \cdot v = 0$

- If two vectors are:
 - orthogonal (perpendicular): $u \cdot v = 0$
 - Careful! There is a 0 vector...

- If two vectors are:
 - orthogonal (perpendicular): $u \cdot v = 0$
 - Careful! There is a 0 vector...
 - same direction: $u \cdot v = 1$

- If two vectors are:
 - orthogonal (perpendicular): $u \cdot v = 0$
 - Careful! There is a 0 vector...
 - same direction: $u \cdot v = 1$
 - opposite directions: $u \cdot v = -1$

Visualization: <u>https://twitter.com/freyaholmer/status/1200807790580768768?lang=en</u>

- If two vectors are:
 - orthogonal (perpendicular): $u \cdot v = 0$
 - Careful! There is a 0 vector...
 - same direction: $u \cdot v = 1$
 - opposite directions: $u \cdot v = -1$
- Commutative
 - $u \cdot v = v \cdot u$
- Associative
 - $u \cdot (v + q) = u \cdot v + u \cdot q$
- Distributive
 - $\alpha u \cdot v = v \cdot \alpha u = \alpha (u \cdot v)$

Visualization: https://twitter.com/freyaholmer/status/1200807790580768768?lang=en

V

 u and v do not need to be orthogonal but v x u (v cross u) will produce a vector orthogonal to both

- u and v do not need to be orthogonal but v x u (v cross u) will produce a vector orthogonal to both
- In 3D, the length of the cross product vector will also be the area of the parallelogram

- u and v do not need to be orthogonal but v x u (v cross u) will produce a vector orthogonal to both
- In 3D, the length of the cross product vector will also be the area of the parallelogram
- A vector that points outward from a plane is called a **normal**

- u and v do not need to be orthogonal but v x u (v cross u) will produce a vector orthogonal to both
- In 3D, the length of the cross product vector will also be the area of the parallelogram
- A vector that points outward from a plane is called a **normal**
- If u and v are pointing in the same direction (regardless of length) the cross product is a 0 vector

Visualization: <u>https://twitter.com/freyaholmer/status/1203421083371749376?lang=en</u>

Calculating the Cross Product

- Method #1
- $v \ge u = |v| |u| \sin(\theta) n$
 - *n* is a perpendicular unit vector

Calculating the Cross Product

- Method #1
- $v \ge u = |v| |u| \sin(\theta) n$
 - *n* is a perpendicular unit vector
- Method #2
- $v \times u = (c_x, c_y, c_z)$ • $c_x = v_y u_z - v_z u_y$ • $c_y = v_z u_x - v_x u_z$

•
$$c_z = v_x u_y - v_y u_x$$

Cross Product "Handedness"

 Use the "right-hand rule" to determine if a x b will be point up or down

Cross Product Properties

- $v \ge u = -(v \ge u)$
- $(\alpha v) \times u = \alpha (v \times u)$
- $v \times (u + q) = v \times u + v \times q$

Vectors vs Points

• The distinction between vectors and points is obvious from a mathematical perspective

Vectors vs Points

- The distinction between vectors and points is obvious from a mathematical perspective
- All vectors can be represented as a series of scalar values multiplied by the basis vectors

• v =
$$\alpha_1 x + \alpha_2 y + \alpha_3 z$$

Vectors vs Points

- The distinction between vectors and points is obvious from a mathematical perspective
- All vectors can be represented as a series of scalar values multiplied by the basis vectors

• $v = \alpha_1 x + \alpha_2 y + \alpha_3 z$

- All points can be represented as a series of scalar values multiplied by the basis vectors AND knowledge of the origin
 - $P = PO + \beta_1 x + \beta_2 y + \beta_3 z$
- This can lead to some confusion in representation

Homogeneous Coordinates

- To remove the ambiguity of representation
- In 3D we extend the representation of vectors and points to 4D
- Vectors are represented as:

• $w = \begin{bmatrix} \delta \\ \delta \\ \delta \\ 0 \end{bmatrix}$ • Points are represented as: • $P = \begin{bmatrix} \alpha \\ \alpha \\ \alpha \\ \alpha \\ \alpha \end{bmatrix}$