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Points

• A location in space
• No size
• No direction
• We prefer them with 

respect to some other 
context…(more on that 
later)
• But for now, we’ll 

ignore that
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Vectors

• Have a direction
• Have magnitude
• A few basic concepts: 
• The blue and green vector are the same
• The orange arrow is an inverse to the blue and 

green
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Vector Space

• We don’t have the concept of locations or distance
• What do we know without that context?
• We can create new vectors using scalar-vector multiplication

• Has a scaling effect (and inverse if we use negative values)
• We can create new vectors using vector-vector addition

• Head-tail axiom

u+v == v+u

u

v

v+u

u

v
u+v
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• Now…we add the point to vector space!
• With our new object we can perform additional operations:
• Point-vector addition where the vector can displace a point and arrive at a 

new point.
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Affine Space

• Now…we add the point to vector space!
• With our new object we can perform additional operations:
• Point-vector addition where the vector can displace a point and arrive at a 

new point.
• Point-point subtraction can provide a vector between two points

• Careful! The direction of the vector depends on the order of the subtraction.

Q

P
v = P - Q

v
Q

P

u = Q - P
u

v != u
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Getting a Frame of Reference

• Our point can serve as an origin to a set of vectors
• These basis vectors serve as our coordinate frame
• Adding in some Euclidean coordinates…
• We can represent vectors using three scalar values
• Each vector has a x, y, and z component
• These components are multiplied by each base vector
• The result is a new vector originating from the origin

y: (0, 1, 0)

x: (1, 0, 0)

z: (0, 0, 1)

origin: (0, 0, 0)

v = 
1
1
0

v (1, 1, 0)

x component

y component

z component

vT = ( 1, 1, 0 ) 



Frames Representations

• This frame representation is of the clip 
coordinates we have been using in class
• However, we can have multiple independent 

frames
• Each frame can have its own coordinates
• You CANNOT work with vectors in different 

coordinate systems unless they are 
translated to the same coordinate space
• We’ll get deeper into this when we talk 

about matrices

y: (0, 1, 0)

x: (1, 0, 0)

z: (0, 0, 1)

origin: (0, 0, 0)
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Vector Math - Magnitude

• Represented as |v| in the book
• The magnitude is the length of the vector
• Visually we can see it forms a very familiar shape
• We can use the Pythagorean Theorem!

In 2D: |v| =  𝑣!" + 𝑣#
"

In 3D: |v| =  𝑣!" + 𝑣#
" + 𝑣 $

"

v



Vector Math - Normalization

• Normalizing a vector create a unit vector meaning the 
length/magnitude of the vector is 1
• Sometimes referred to as a direction vector
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Vector Math - Normalization

• Normalizing a vector create a unit vector meaning the 
length/magnitude of the vector is 1
• Sometimes referred to as a direction vector

• Represented as #𝑣 = v / |v|
• Note that |v| is a scalar value
• Scalar-vector multiplication
• !𝑣 = v * (1 / |v|)

v

#𝑣

1
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Vector Math – Dot Product

• One form of vector multiplication
• u $ v = uxvx + uyvy + uzvz
• u # v will be a scalar value

• Note: u $ u is the squared length of the vector
• Can be used to find the length of the 

projection of u onto v
• If |v| = 1, d = u # v 
• else d = (u # v) / |v| v

u

d



Vector Math – Dot Product

• Can be calculated a second way
• u $ v = |u||v|cos𝜃
• Note if u and v are both unit vectors

this simplifies to:
• u # v = cos𝜃

v

u
𝜃
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Vector Math – Dot Product Properties

• If two vectors are:
• orthogonal (perpendicular): u ! v = 0

• Careful! There is a 0 vector…
• same direction: u ! v = 1
• opposite directions: u ! v = -1

• Commutative
• u ! v = v ! u 

• Associative
• u ! (v + q) = u ! v + u ! q

• Distributive
• 𝛼u ! v = v ! 𝛼u = 𝛼(u ! v) 

v

u

https://twitter.com/freyaholmer/status/1200807790580768768?lang=enVisualization:

v

u
vu

https://twitter.com/freyaholmer/status/1200807790580768768?lang=en
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Cross Product Visually

u

v

v x u

• u and v do not need to be orthogonal but 
v x u (v cross u) will produce a vector 
orthogonal to both
• In 3D, the length of the cross product vector 

will also be the area of the parallelogram
• A vector that points outward from a plane is 

called a normal
• If u and v are pointing in the same direction 

(regardless of length) the cross product is a 0 
vector

https://twitter.com/freyaholmer/status/1203421083371749376?lang=enVisualization:

-v x u

https://twitter.com/freyaholmer/status/1203421083371749376?lang=en


Calculating the Cross Product

• Method #1
• v x u = |v||u| sin(𝜃) n
• n is a perpendicular unit vector
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Calculating the Cross Product

• Method #1
• v x u = |v||u| sin(𝜃) n
• n is a perpendicular unit vector

• Method #2
• v x u = (cx, cy, cz)
• cx = vyuz – vzuy

• cy = vzux – vxuz

• cz = vxuy - vyux

u

v

v x u



Cross Product “Handedness”

• Use the “right-hand rule” to determine if a x b will be point up or 
down

a x b

a

b



Cross Product Properties

• v x u = - (v x u)
• (𝛼v) x u = 𝛼(v x u)
• v x (u + q) = v x u + v x q

u

v

v x u
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Vectors vs Points

• The distinction between vectors and points is obvious 
from a mathematical perspective
• All vectors can be represented as a series of scalar values 

multiplied by the basis vectors
• v = 𝛼1x + 𝛼2y + 𝛼3z

• All points can be represented as a series of scalar values 
multiplied by the basis vectors AND knowledge of the 
origin
• P = P0 + 𝛽1x + 𝛽2y + 𝛽3z

• This can lead to some confusion in representation

y

z

v

x

P



Homogeneous Coordinates

• To remove the ambiguity of representation
• In 3D we extend the representation of vectors and points to 4D
• Vectors are represented as:

• w =

• Points are represented as:

• P = 

𝛿
𝛿
𝛿
𝛿
0

𝛼
𝛼
𝛼
𝛼
1


