
Crash Consistency: FSCK and 
Journaling

Chapter 42



Previously in CS212…

• We looked at a new take on the file system abstraction

• Details of the FFS

• How we optimize the file system using caches

• But…caches tend to be fast but volatile…what do we do?



Accidents Happen

• Suppose you lose power at your residence

• Suppose your computer encounters an error it cannot recover from, 
and it crashes the system
• Windows - ”Blue Screen” :’(
• MacOS Linux - Kernel Panic

• How do we update all the necessary data structures to keep track of 
our filesystem?



Crash-Consistency Problem

• Disks can only perform one request at a time

• Most reads and writes touch multiple data structures on disk
• Like bitmaps, inodes, and data blocks

• If we were to be unable to complete all the necessary writes the 
system is now in an inconsistent state (partially updated)

• How can we ensure that the disk is resilient to these issues?



Example

• If only the data is written it’s not a file-system crash consistency issue as 
the metadata is ”correct”, but does mean we have lost data
• Similar if we successfully wrote to the bitmap and the indoes but not the data block

• Any other combination of one metadata block and/or the data block leave 
the metadata in an inconsistent state.

• I get it already, what do we do!



The File System Checker

• Allow the inconsistencies to happen and fix them later during a reboot
• Unix tool fsck

• Systematically scans the disk and checks the
• Superblock
• Free blocks (bitmaps)
• Inode state
• Inode links
• Duplicate pointers in Inodes
• Bad block pointers in Inodes
• Directory contents

• Problem…
• Super slow! Imagine a very large filesystem. 



Journaling (Write-Ahead Logging)

• A concept lifted from database management systems

• Add a bit of record keeping before each write

• Before you change stuff on disk, write an entry that outlines what you’ll be 
doing to the journal

• But…that’s more data written to the disk (overhead)
• Yes, with the hope of saving time during recovery



How data journaling works

• TxB indicate the beginning of a transaction that provides
• A transaction identifier
• Information about the update like block addresses

• I[v2], B[v2], Db
• The actual content of the data blocks of data that need updating

• TxE indicates the end of a transaction that provides
• A matching transaction identifier

• With the transaction recorded, we then checkpoint the filesystem with 
the transaction information (I[v2], B[v2], Db) 



What if the crash happens during journaling?

• Well, we could write each journal data unit one at a time
• Very slow…

• We could write all of it at once (sequential)
• Fast, but the order is not guaranteed

• Better approach
• Journal Write – Write transaction begin and block data to the log (wait for complete)
• Journal Commit – Write the TxE to end the transaction (needs to be a 512-byte block) 
• Checkpoint – write the contents of the transaction to disk

• To limit write traffic overhead, some file systems opt to buffer the creation of 
journal transactions



Recovery with Journaling

• If the OS crashes before the journal entry is complete it is skipped
• Journal commit operation was not completed

• If the journal commit operation is complete the OS can crash anytime 
after, and the transactions can be recovered

• Journal is replayed in order updating the on-disk structures
• Worst case, some updates are partially performed before the crash, and the 

operation is duplicated



The Journaling Log
• Journaling space is finite
• We don’t need a list of ALL transactions especially if they have completed 

successfully
• The longer the log, the longer the recovery

• If the log fills, we can’t write to disk (safely)
• Takes the form of a reusable circular data structure
• We can add some metadata for the log and mark transactions as free 

when we are complete
• New step that happens after a successful checkpoint



Data Journaling vs Ordered Journaling
• We’ve been talking about Data Journaling (because the transaction 

includes the data)
• This means EVERYTHING is written twice!
• Halves the peek read and write bandwidth of the drive

• What if we didn’t write EVERYTHING to the journal
• Ordered journaling (aka: Metadata Journaling)

• If we write the user data to disk first, we can use the journal only to 
hold the necessary pointers (bitmaps and inodes) and update that 
later
• NOTE: Directories ARE included in the journal as they are considered 

metadata

• This approach is at the core of most modern journaled file systems



Ordered Journaling Steps

1. Data write – Write user data to disk
2. Journal metadata write – Write begin and metadata to log and 

WAIT FOR THE WRITES TO COMPLETE
3. Journal commit – Write the transaction end block WAIT FOR THE 

WRITE TO COMPLETE
4. Checkpoint metadata – write metadata to disk
5. Free – mark the journal entry as available for overwrite
• Note: You can do issues operations for 1 and 2 concurrently but they 

must be done before operation 3



Edge Case

• Assume we have directory foo, and we add a file to it
• We then delete that directory and create a file named bar
• The file bar is stored in the same block address where the directory 

foo existed

• With ordered journaling, during a replay after a crash, the directory 
would overwrite the file bar stored on disk!
• In Linux ext3, a new record is added to the journal called revoke
• Any entry identified by a revoke record is not replayed



Next Time

• EXAM REVIEW!


