
Locality and the Fast File System
Chapter 41



Previously in CS212…

• We looked at the basics of a file system implementation

• Disks are broken down into blocks

• We use part of the disk for holding data, and other portions for 
metadata
• Inodes for block free list and file/directory location metadata
• SUPERBLOCK for metadata about the filesystem

• However, we have a problem….



Poor Performance

• The vsfs example and the old UNIX filesystem don’t store things with 
locality in mind

• Data is very far from the inodes which causes expensive seek 
operations

• Small block sizes minimized internal fragmentation
• External fragmentation can cause files to be spread across multiple non-

consecutive blocks
• Mechanical HDDs benefit from defragmentation tools



Fast File System (FFS)

• Built on top of the standard 
interface
• open(), read(), write(), 

close()

• A cylinder is the set of 
tracks in the same position 
across all patter surfaces
• FFS collects consecutive 

cylinders into a cylinder 
group



Logical Organization
• The HDD doesn’t share information about the geometry of the HDD
• Only block addresses

• Modern file systems logically organize the drive into block groups
• Each group is a consecutive portion of the disk address space

• The important thing is that data stored in the same group will not 
result in long seeking across the disk
• Each group keep track of its own file system structures



Allocating Files and Directories

• Keep related stuff together
• Allocate data blocks for a file in the same group as its inode
• Place all files that are in the same directory in the cylinder group of the 

directory they are in

• Assume we store /a/c, /a/d, /a/e, /b/f
Cylinders with directory locality

Vs.

Cylinders without directory locality



Large-File Exception

• A large file could take up all the space in a group
• This means we might not be able to store other files in the same directory 

within the same group

• We instead use up the direct blocks first and use the indirect pointers 
to store the remaining content in other block groups
• Likely with less utilization

• Does have performance issues, but we can limit it with larger chunks
• A chuck is just a unit of how much data we read/write from the disk



Other FFS Features

• Sub-blocks to hold small files
• Reduce internal fragmentation
• Mostly avoided by having the library buffer the data and write out when it’s 

large enough

• Parameterization
• Skip blocks when writing to consecutive data to about “missing” data on a 

rotation
• Modern drives have a track buffer to

hold a track and reach from this cache
on subsequent reads for that track



Next Time

• We talk about how we handle situations when things go wrong…


