Locality and the Fast File System

Chapter 41

Previously in CS212...

* We looked at the basics of a file system implementation
* Disks are broken down into blocks

* We use part of the disk for holding data, and other portions for
metadata

* Inodes for block free list and file/directory location metadata
* SUPERBLOCK for metadata about the filesystem

 However, we have a problem....

Poor Performance

* The vsfs example and the old UNIX filesystem don’t store things with
locality in mind

* Data is very far from the inodes which causes expensive seek
operations

* Small block sizes minimized internal fragmentation

* External fragmentation can cause files to be spread across multiple non-
consecutive blocks

* Mechanical HDDs benefit from defragmentation tools

Fast File System (FFS) scessanivrte et~ \—

floating on a cushion of ai

magnetic layer | 333 |8e¢[See

aluminum plate 1 bit

 Built on top of the standard ..«
interface

* open(), read(), write(), sector
close()

* A cylinder is the set of
tracks in the same position
across all patter surfaces cylinder

disk read-and-write
P heads

* FFS collects consecutive
cylinders into a cylinder

group

Logical Organization

* The HDD doesn’t share information about the geometry of the HDD
* Only block addresses

* Modern file systems logically organize the drive into block groups
* Each group is a consecutive portion of the disk address space

Group 0 Group 1 Group 2

* The important thing is that data stored in the same group will not
result in long seeking across the disk

* Each group keep track of its own file system structures

Em Inodes Data

Allocating Files and Directories

* Keep related stuff together
* Allocate data blocks for a file in the same group as its inode
* Place all files that are in the same directory in the cylinder group of the
directory they are in

* Assume we store /a/c, /a/d, /a/e, /b/f

Cylinders with directory locality Cylinders without directory locality
group inodes data group inodes data

0 /————————- [== 0 /————————- [-———m -
1 acde-—————- accddee——- l a-————————- a————————-
2 bf——————- bff—————- 2 b————————- b-———————-
3 - Vs. 3 c————————— CC————————
4 —————————— 4 d————————- dd——————-
S —————————= ————————— S e————————~- ee———————-
6 —————————— ————————— 6 f-———————— o

Large-File Exception

* A large file could take up all the space in a group
* This means we might not be able to store other files in the same directory

within the same group group inodes data
0 /a ———————— /aaaaaaaaa ddaaddadaadd dddddddddda a—-— - ———
l __
2 __

* We instead use up the direct blocks first and use the indirect pointers
to store the remaining content in other block groups

* Likely with less utilization ~ 970uF “nodes data

a———————- /aaaaa———— —————————= —————————— —————
1 - aaaaa———-—- —TTTTTTTT T —om o —————— e
2 aaaaa-———-—— ——-——————— —————————— ——————————
3 - aaaaa———-—— —————————— —————————— ——————————
4 aaaaa———-—- —T-TTTTTT— —om oo o ——— = —— e
S - aaaaa———-——- —---T————— —o— oo oo ——— ——————————
6 —————————— | . e

* Does have performance issues, but we can limit it with larger chunks
* A chuck is just a unit of how much data we read/write from the disk

Other FFS Features

e Sub-blocks to hold small files

* Reduce internal fragmentation

* Mostly avoided by having the library buffer the data and write out when it’s
large enough

e Parameterization

 Skip blocks when writing to consecutive data to about “missing” data on a
rotation

e Modern drives have a track buffer to
hold a track and reach from this cache
on subsequent reads for that track

Figure 41.3: FFS: Standard Versus Parameterized Placement

Next Time

* We talk about how we handle situations when things go wrong...

TECHNICAL
DIFFICULTIES

PLEASE _©\)
STAND /v

