
File System Implementation
Chapter 40



Previously in CS212…

• We looked at the higher-level abstraction for our persistent storage
• Files and Directories in the file system hierarchy
• File Table
• File descriptors

• Operations
• open
• read
• write
• close
• lseek

• File system metadata



Basic Organization

• Chop up the storage medium into storage units of blocks (commonly 
4 KB)

• However, we don’t get to use ALL the space for storage

• Why not?



Metadata
• We need to store information about files/directories stored in the 

data region
• Size, owner and access permission, timestamps for access and modification, 

etc.
• The structure that holds this data is called an inode

• Inodes tend to be small (128 or 256 bytes)
• A 4-KB block could hold 16 inodes of size 256 bytes
• The example above can hold 80 inodes (16 inodes per block * 5 blocks) which 

is also how many files we could store



Allocation Structures
• We need to also be able to keep track of which data blocks and inodes are 

in use

• The vsfs example uses two bitmaps (i and d) for inodes and data blocks
• 1 is in-use, 0 is free

• The last thing we need is a SUPERBLOCK which can tell us details about the 
filesystem



Inodes

• Index nodes (inodes) are referred to by the i-number or low-level 
name of the file
• These allow you to locate where the data is located on disk
• Assume:
• inode number = 52
• inode size = 256 bytes
• sector size = 512 bytes

• What is the byte
address of the block
of inodes?
• 52 * 256 + 12KB = 25KB

• Oops, the HDD is not byte addressable…



Inode Sector Iblock and Address Calculation

• Recall:
• block size = 4096 bytes (4KB)
• inode size = 256 bytes

• 16 inodes per block
• sector size = 512 bytes

• 8 sectors per block

• iblock = (i-number * inode size) / block size
• sector address = ((iblock * block size) + inode table start address) / sector size
• What’s the sector address of i-numbers 0, 32, 33, and 53?

• 24, 40, 40, 50



Inode Sector Address Calculation Shortcut

• Recall:
• block size = 4096 bytes (4KB)
• inode size = 256 bytes

• 16 inodes per block
• sector size = 512 bytes

• 8 sectors per block

• sector address = ((i-number * inode size) + inode table start) / sector size
• Still works, I promise



Referencing Data Blocks via Pointers
• Each inode could have a set of direct pointers that stores the disk 

block addresses for the file 
• What happens for large files?
• Any file larger than block size * num of direct pointers is too big!

• We can work around this by having an indirect pointer that points to a 
block on disk that contains even more pointers to disk blocks
• We can combine the two solutions to have a set of direct pointers and 

indirect pointers
• With 12 direct pointers, 1 indirect pointer, 4-byte addresses, and 4 KB pages we 

can store files as large as (12 + 1024) * 4 KB or 4,144 KB (4 MB)



Multi-level Indexing

• We can continue the process of using indirect pointers for double or 
even triple indirect pointers

• In a double indirect pointer, we reference a block that contains 
pointers to indirect blocks
• Those indirect blocks in turn contain the actual block addressed on disk

• With a double indirect pointer, we can achieve 1024^2 * 4KB or ~4GB 
files



Why have a set of direct pointers at all?

• Performing the extra steps of indirection to associate all the 
necessary block of data for a file isn’t exactly efficient
• We are optimizing for the “typical” case

• If we can reference all the blocks we need with a small set of direct 
pointers, this is more efficient



Access Path for Reading

• Reading File @
/foo/bar
• /
• foo
• bar (the file to read)

• What’s with the 
writing?
• Last accessed 

metadata update



Access Path for Writing
• Writing new file @

/foo/bar
• /
• foo
• bar (the file to created)

• Need to update bitmaps

• Why the write to foo inode?
• Directory’s hold data too!
• As more files are added the directory 

information grows and takes up 
more space

• The inode references the space the 
directory uses



Reducing File System Read I/O Costs

• Aggressive Caching with RAM!
• static partitioning 

• Fixed-sized cache – Fair, easier to implement, but perhaps wasteful
• dynamic partitioning

• Unified page cache – Better utilization, flexible, perhaps unfair, difficult to implement

• Use something like the LRU (or other) strategies to save important 
data in memory
• While initial reads might incur a cost, subsequent reads may be able 

to be read from RAM cache which is MUCH faster



Reducing File System Write I/O Costs

• Caching has less of an impact here as the writing must still be done
• Here we can use write buffering to delay writes
• Hold the data to be written in RAM and write it out later

• Why?
• We can batch jobs together that may need to update similar structures 

(bitmaps, directories, etc.)
• Can allow for better I/O scheduling
• Some operations can be avoided completely

• Create a file, and then delete it soon after

• Writes can be buffered between 5 and 30 seconds on most systems



Wait…RAM isn’t persistent

• Yup…buffering can mitigate file system I/O performance impacts, but 
if the power goes abruptly…so too goes your data

• For general purpose computing, probably fine

• A significant problem for critical systems like databases
• May force writes to disk with fsync, direct I/O, or raw disk interface

• Durability / Performance Trade-off



Next Time

• We investigate ways to improve file system performance


