File System Implementation

Chapter 40

Previously in CS212...

* We looked at the higher-level abstraction for our persistent storage
* Files and Directories in the file system hierarchy
* File Table

* File descriptors

* Operations
e open
* read
* write
* close
* |seek

* File system metadata

Basic Organization

* Chop up the storage medium into storage units of blocks (commonly

4 KB)

0 7 8 15 16 23 24 31

l |
32 39 40 47 48 55 56 63

* However, we don’t get to use ALL the space for storage

, Data Region .

D[D[DIDIDIDIDI|D| [D[DID|DIDID[D[D| [D|D|D]|D|DI{D[D[D

0 7 8 15 16 23 24 31
Data Region

[DIDIDIDID[DIDID] [D]D]DIDIDIDIDD] [DIDIDIDIDIDID]D] [DID]DIDIDID[DID]

32 39 40 4748 = 5556 63

* Why not?

Metadata

* We need to store information about files/directories stored in the

data region
* Size, owner and access permission, timestamps for access and modification,
etc.
* The structure that holds this data is called an inode

~ Inodes . Data Region {

[[O]D]D[D[D[DID[D)] [D]DID[DIDIDIDID] [DID[DDID[DID[D]
0 7 8 15 16 23 24 31
: Data Region :
D[D|D(D|D|D(D|D] |D|D|D|D|D[D|D(D| |D|D|D|D|D|D|D|D| [D|D|D|D|D|D|D|D
32 39 40 47 48 55 56 63

* Inodes tend to be small (128 or 256 bytes)
* A 4-KB block could hold 16 inodes of size 256 bytes

* The example above can hold 80 inodes (16 inodes per block * 5 blocks) which
is also how many files we could store

Allocation Structures

 We need to also be able to keep track of which data blocks and inodes are
In use __Inodes Data Region

Dl_ fﬁrﬁfﬁfﬁfﬁlﬁfﬁfﬁl [DIDID[D[DI[DIDID] fﬁrﬁfﬁlﬁlﬁfﬁrﬁm
| 1516 - 2324
Data Region

rﬁfﬁlﬁrﬁlﬁrﬁrﬁ[ﬂ [DIDIDIDIDIDIDID] [DID[DIDIDIDIDID] fﬁrﬁfﬁfﬁlﬁfﬁ[ﬁm
39 40 47 48 55 56

* The vsfs example uses two bitmaps (i and d) for inodes and data blocks
 1isin-use, Ois free
~ Inodes . Data Region

rs:m'_ DIDIDIDIDIDIDID) (DIDTDIDIDIDDID) rsrﬁrﬁrﬁrﬁrmmm
15 16 23 24
Data Region

'DID|D|D[DID[D|D] [D|D]D[D|D|DID|D] [D]D]D|D|D[D[DID] [D]D[DID[D|DIDID)
32 39 40 47 48 55 56 63

* The last thing we need is a SUPERBLOCK which can tell us details about the
filesystem

Inodes

* Index nodes (inodes) are referred to by the i-number or low-level
name of the file

* These allow you to locate where the data is located on disk
* Assume:

* inode number = 52 The Inode Table (Closeup)
* inode size = 256 bytes iblock 0 ' iblock 1 ! iblock 2 ! iblock 3 ! iblock 4

. sector size = 512 bytes | | | 0[1[2]3[1e[17]18]19/32[33[34354 8/ 950[51/64/65/66/67
S " b 4|5 (67 [20[21]2223}36/37[38]39/52/5354/55/68/69[70/71
« What is the byte UPET et SRl S 5 0 [10[11[24]25/26(27/40/41/42143/56/57(58/5972(7374(75

12[13[14[15[28[29[30[31|44/45[46/47|60/61/62/63|76/77[78[79
address of the block (kg 4kB 8KB 12KB 16KB 20KB 24KB 28KB 32KB
of inodes?

« 52 * 256 + 12KB = 25KB
* Oops, the HDD is not byte addressable...

Inode Sector Iblock and Address Calculation

e Recall:

* block size = 4096 bytes (4KB)
* inode size = 256 bytes The Inode Table (Closeup)
« 16 m_odes per block | | | . iblock 0 * iblock 1 ! iblock 2 ! iblock 3 ! iblock 4
e sector size = 512 bytes 0| 1]2]3][16]17]18[19[32[33[34]35|48/49]50]51|64/65/66]67
» 8 sectors per block

: 4|5 |67 [20[21/22[23|36/37|38|39]52(53]|54|55(68]69[70|7 1
-omap d-bmap pyerrmenEE Ty m e

Super

56(57|58/59|72(73[74{75
1213141512829]30|31 415146]47[60[61162]63176 777879
OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB
* iblock = (i-number * inode size) / block size

 sector address = ((iblock * block size) + inode table start address) / sector size

 What’s the sector address of i-numbers 0, 32, 33, and 537
» 24,40, 40, 50

Inode Sector Address Calculation Shortcut

* Recall:
* block size = 4096 bytes (4KB)
* inode size = 256 bytes The Inode Table (Closeup)
« 16 inodes per block iblock 0 : iblock 1 : iblock 2 : iblock 3 : iblock 4

0]1 [2]3 1671 7]18]19]32]33[34]35/4 81495051646 5/66/6 7.
: 4|56 7 [20[21/22[23|36/37|38|39]52(53|54]55|68|69[70|7 1
el SR T N 5 6 170/17(24/25/26127140/41]42/43(56/57158159(7273(74]75
12(13(14]15/28/29[30[31/44/45(46(47|60/61/62|63|76(77(78|79
OKB 4KB 8KB 12KB 16KB 20K 24KB 28KB 32KB

* sector size =512 bytes
» 8 sectors per block

Super

 sector address = ((i-number * inode size) + inode table start) / sector size
e Still works, | promise

Referencing Data Blocks via Pointers

* Each inode could have a set of direct pointers that stores the disk
block addresses for the file

* What happens for large files?
* Any file larger than block size * num of direct pointers is too big!

* We can work around this by having an indirect pointer that points to a
block on disk that contains even more pointers to disk blocks

* We can combine the two solutions to have a set of direct pointers and
indirect pointers

* With 12 direct pointers, 1 indirect pointer, 4-byte addresses, and 4 KB pages we
can store files as large as (12 + 1024) * 4 KB or 4,144 KB (4 MB)

Multi-level Indexing

* We can continue the process of using indirect pointers for double or
even triple indirect pointers

* In a double indirect pointer, we reference a block that contains
pointers to indirect blocks

 Those indirect blocks in turn contain the actual block addressed on disk

* With a double indirect pointer, we can achieve 102472 * 4KB or ~4GB
files

Why have a set of direct pointers at all?

* Performing the extra steps of indirection to associate all the
necessary block of data for a file isn’t exactly efficient

* We are optimizing for the “typical” case

Most files are small “2K is the most common size
Average file size is growing Almost 200K is the average
Most bytes are stored in large files A few big files use most of space
File systems contains lots of files Almost 100K on average

File systems are roughly half full Even as disks grow, file systems
remain “50% full

Directories are typically small Many have few entries; most
have 20 or fewer

e If we can reference all the blocks we need with a small set of direct
pointers, this is more efficient

Access Path for Reading

* Reading File @
/foo/bar
*/
* foo
* bar (the file to read)

* What’s with the
writing?
e Last accessed
metadata update

data inode
bitmap bitmap

root

inode inode inode

foo

bar

root foo bar bar Dbar
data data data data data

01] [2]

read
read
open(bar) read
read
read
read
read() read
write
read
read() read
write
read
read() read

write

Access Path for Writing

* Writing new file @
/foo/bar
*/
* foo
* bar (the file to created)

* Need to update bitmaps

 Why the write to foo inode?
 Directory’s hold data too!

* As more files are added the directory
information grows and takes up
more space

* The inode references the space the
directory uses

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data data data
(0] 1] [2]
read
read
read
read
create read
(/foo/bar) write
write
read
write
write
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write
write

write

Reducing File System Read I/O Costs

* Aggressive Caching with RAM!
* static partitioning
* Fixed-sized cache — Fair, easier to implement, but perhaps wasteful
e dynamic partitioning
* Unified page cache — Better utilization, flexible, perhaps unfair, difficult to implement

* Use something like the LRU (or other) strategies to save important
data in memory

* While initial reads might incur a cost, subsequent reads may be able
to be read from RAM cache which is MUCH faster

Reducing File System Write |/O Costs

e Caching has less of an impact here as the writing must still be done

* Here we can use write buffering to delay writes
* Hold the data to be written in RAM and write it out later

* Why?
* We can batch jobs together that may need to update similar structures
(bitmaps, directories, etc.)
* Can allow for better I/0O scheduling

* Some operations can be avoided completely
* Create afile, and then delete it soon after

e Writes can be buffered between 5 and 30 seconds on most systems

Wait...RAM isn’t persistent

* Yup...buffering can mitigate file system |/O performance impacts, but
if the power goes abruptly...so too goes your data

* For general purpose computing, probably fine

* A significant problem for critical systems like databases
* May force writes to disk with fsync, direct |/O, or raw disk interface

 Durability / Performance Trade-off

Next Time

* We investigate ways to improve file system performance

