
Files and Directories
Chapter 39

Previously in CS212…

• We talked about Hard disk drives

• We looked at some ways of determining performance of a single disk

• We saw how RAID can help with disk I/O performance, reliability, and
storage capacity.
• Each RAID configuration offers a different balance between these features

• Now we start to look at a higher-level abstraction for our persistent
storage

What are files and directories?

• File – linear array of bytes
• Has a low-level name called its inode number
• Most OSes don’t care about the structure of the file, rather that the data is

there and in its proper locaton

• Directory – also like a file, but with a very specific structure
• Has an inode number
• References files associated (“in”) the directory with a pair:

(user-given name, inode number)
• Directories can be nested to create a directory tree/hierarchy
• The ”root” of the directory hierarchy starts at “/” on Unix-based systems

Directory Hierarchy Example
• An approximation of what each

director holds:

• / (0)
• (foo, 1)
• (bar, 2)

• foo (1)
• (bar.txt, 3)

• bar (2)
• (bar, 4)
• (foo, 5)

• bar(4)
• foo(5)

• (bar.txt, 6)
Paths can be absolute (starting with root): /foo/bar.txt
or relative (based on the current working directory):
bar/foo/bar.txt (assuming we are in the root directory)

Creating a File

• Can create a file using open
• “foo” is the name
• O_CREAT = Creates the file if it doesn’t exist
• O_WRONLY = The file will be written to only
• O_TRUNC = If the file exists, clear its contents
• S_IRUSR | S_IWUSR = permissions for the file (read and write for the user)

• What we get back is a file descriptor
• Per process ”pointer” to a file type object to use for additional operations
• All programs have three file descriptors to start

• 0 – standard input
• 1 – standard output
• 2 – standard error

File Descriptor Example

• Open “foo” read-only (64-bit mode)
• Get the file descriptor 3 (process

stores all descriptors in an internal
structure)

• Read 4K from the file
• Get 6 bytes of data read

• Write 6 bytes to standard out
• Read and other 4K
• Get 0 bytes of data (End of File)

• Close the file using descriptor 3

Non-Sequential Read/Writes

• It is possible to read a file in a non-linear fashion
• You can provide an offset and provide behavior with respect to that

offset
• Why might we do this?

*Simplified File Struct

File Offset Examples

**Note that all open files are tracked in the open file table kernel structure (along with a lock)

Sharing File Table Entries

• Most times if one or more processes use the same file the open file
table has an entry for each process
• Each read/write is independent with its own offset

• However, if we use fork(), the open file table is shared
• This will cause the file struct reference count to be incremented (one for each

process using the file)
• When they close their respective file descriptors, the reference count is

decremented (and removed at zero)

• Another method is using dup()
• This will create a new file descriptor, that references the same underlying file

struct

Links

• Hard links – Can create an alternate reference to an existing file
(updates the reference count for the file)
• Cannot link files across disks (each file system has its own inode number set)
• Cannot link to a directory (cyclic path in the directory tree)

• Symbolic Links – Can create an alternative reference to existing files
or directories
• Takes up extra space as it stores the path to the file/directory it references
• Dangling references are possible if you delete the original file/directory the

symbolic link does not update

Permissions
• By default on a standard Unix file system, we have a simple method

for file/directory permissions
• In the image above, we have details about the file foo.txt
• The first character indicates file (-), directory (d), or link (l)
• Each set of three character after indicates the owner, group, and

other user permissions
• Each of these sets can be read (r), write (w), or execute (x)

respectively
• Any position with a hyphen (-) means that permission is not granted

• You can change the permissions of a file/directory with chmod
• Some filesystems support access control lists for fine grain

permissions

Next Time

• We investigate the implementation of a file system

