|/O Device

Chapter 36

/O Devices
* |/O == Input/Output

* Includes:
* Network Interfaces
Graphics Cards
HDD/SSD (other internal storage devices)
USB Devices
Etc.

* How do these things communicate with the OS

They ride the bus!

SENORGIF.COM

The Hierarchical Bus Architecture

* We have a system of interconnected
transfer channels

CPU Memory

Memory Bus
(proprietary)

* Channels have a hierarchy supporting
different transfer speeds “ > General /0 Bus

(e.g., PCI)
e Some devices are slower than others

Graphics

* Based on physics and cost > Poriohors] 1O Bus

<
* Physically == less latency (e.g., SCSI, SATA, USB)
* Higher speed materials == $SS @ @

Figure 36.1: Prototypical System Architecture

The Hierarchical Bus Architecture

* We have a system of interconnected
transfer channels

* Channels have a hierarchy supporting
different transfer speeds

e Some devices are slower than others

* Based on physics and cost
* Physically == less latency
* Higher speed materials == SSS

Graphics |«

PCle
Graphics

PCle

Network

CPU

Memory

<)
DMI

/O Chip

| Keyboard

eSATA

Interconnect

Memory

| Disk

USB

Di

Di

Figure 36.2: Modern System Architecture

Programmed 1/O (PIO)

* The CPU directly tells a device to do
Somethin g Registers Status Command Data Interface
* The device uses firmware to perform its | Mirocontroller CPU)
fu nction Memory (DRAM or SRAM or both) Internals
Other Hardware-specific Chips

Figure 36.3: A Canonical Device

e The CPU:

» gets the status of the device
. ” ” . While (STATUS == BUSY)
* pUtS data IN the Data regISter ; // wait until device is not busy

e puts the operations in the “"Command” Write data to DATA register
Write command to COMMAND register

regISter (starts the device and executes the command)
While (STATUS == BUSY)
; // wait until device is done with your request

* Polling (like busy waiting) means the
CPU can’t serve requests

Interrupts

* Polling isn’t ideal for slower devices

CPU |1 |1 (1] 1]1 1111111

Disk 111111111

* What if we let the CPU do other stuff, and then use interrupts to
notify it when the job is done?

CPU |1 (1|11

Disk 1111111

e Better overall use of resources!

So always use interrupts?

* Nope, interrupts generate overhead

A fast device generating a bunch of interrupts can slow the system
down as it needs to perform context switching to service the interrupt

* In some scenarios like networking, it’s possible to flood a system with
so many requests that it becomes livelocked

e (D)DOS Attack

* We may be able to mitigate this a bit buy using coalescing to group of
requests with a single interrupt
* Lower interrupt overhead, but more latency added to the request

Data Transfer

* PIO requires the CPU be directly involved in the copying of data
* Not exactly an efficient use of the CPU’s time

Disk 111 (1711

* Add Direct Memory Access (DMA) hardware to help serve the request
e OS tells the DMA where the data is, how much to copy, and where to put it
* DMA issues an interrupt when the job is done

DMA c|lc|c

Disk 1111111

Interacting with 1/0 Devices

* Explicit I/O Instructions

* Privileged instructions indicating the register holding the data and the port to
identify the device

* Memory-mapped I/O

* Device registers are exposed as memory addresses where data can be
loaded/stored like any other memory address

* The hardware routes the load/store to the device directly
* Requires fewer specific instructions in instruction set

* Both are still used today and are relatively equivalent

Coordinating with the OS

* Devices have firmware software built-in to make them function

* The OS uses a device driver software to provide an abstraction for the
OS to interact with the device
e E.g. Nvidia drivers do not work with AMD video cards

Application 2
LELEL POSIX API [open, read, write, close, etc.] LELELL
* Hierarchical Abstraction File System | Raw
* APl interfaces at the top Generic Block Interface [block read/write] S
(exposed to users) Generic Block Layer FE)
Specific Block Interface [protocol-specific read/write] §
* Device drivers to perform Device Driver [SCSI, ATA, etc]

operations near the bottom
Figure 36.4: The File System Stack

Next Time

 We talk about Hard Disk Drives

* Primarily the spinning metal platter variety

* Calculating disk performance

* Disk Scheduling

