
I/O Device
Chapter 36



I/O Devices

• I/O == Input/Output

• Includes:
• Network Interfaces
• Graphics Cards
• HDD/SSD (other internal storage devices)
• USB Devices
• Etc.

• How do these things communicate with the OS



They ride the bus!



The Hierarchical Bus Architecture

• We have a system of interconnected 
transfer channels

• Channels have a hierarchy supporting 
different transfer speeds
• Some devices are slower than others

• Based on physics and cost
• Physically == less latency
• Higher speed materials == $$$



The Hierarchical Bus Architecture

• We have a system of interconnected 
transfer channels

• Channels have a hierarchy supporting 
different transfer speeds
• Some devices are slower than others

• Based on physics and cost
• Physically == less latency
• Higher speed materials == $$$



Programmed I/O (PIO)
• The CPU directly tells a device to do 

something
• The device uses firmware to perform its 

function

• The CPU:
• gets the status of the device
• puts data in the ”Data” register
• puts the operations in the ”Command” 

register

• Polling (like busy waiting) means the 
CPU can’t serve requests



Interrupts
• Polling isn’t ideal for slower devices

• What if we let the CPU do other stuff, and then use interrupts to 
notify it when the job is done?

• Better overall use of resources!



So always use interrupts?
• Nope, interrupts generate overhead

• A fast device generating a bunch of interrupts can slow the system 
down as it needs to perform context switching to service the interrupt

• In some scenarios like networking, it’s possible to flood a system with 
so many requests that it becomes livelocked 
• (D)DOS Attack

• We may be able to mitigate this a bit buy using coalescing to group of 
requests with a single interrupt
• Lower interrupt overhead, but more latency added to the request



Data Transfer
• PIO requires the CPU be directly involved in the copying of data
• Not exactly an efficient use of the CPU’s time

• Add Direct Memory Access (DMA) hardware to help serve the request
• OS tells the DMA where the data is, how much to copy, and where to put it
• DMA issues an interrupt when the job is done



Interacting with I/O Devices

• Explicit I/O Instructions
• Privileged instructions indicating the register holding the data and the port to 

identify the device

• Memory-mapped I/O
• Device registers are exposed as memory addresses where data can be 

loaded/stored like any other memory address
• The hardware routes the load/store to the device directly
• Requires fewer specific instructions in instruction set

• Both are still used today and are relatively equivalent



Coordinating with the OS
• Devices have firmware software built-in to make them function

• The OS uses a device driver software to provide an abstraction for the 
OS to interact with the device
• E.g. Nvidia drivers do not work with AMD video cards

• Hierarchical Abstraction
• API interfaces at the top 

(exposed to users)

• Device drivers to perform 
operations near the bottom



Next Time

• We talk about Hard Disk Drives
• Primarily the spinning metal platter variety

• Calculating disk performance

• Disk Scheduling


