Concurrency Bugs

Chapter 32



Previously in CS212...

* We've looked at locks, condition variables, and semaphores

* We know that using threads and introducing concurrency in our
applications can cause extra complications

* We discussed deadlocks where the threads all in a perpetual state of
waiting on each other for resources

* An example was the dining philosophers

* Here we take closer look at deadlock and non-deadlocking bugs



Example

* What is wrong with this code?

1 Thread 1::

> if (thd->proc_info) {

3 fputs (thd->proc_info, ...);
s}

5

¢ Thread 2::

thd->proc_info = NULL;

* This is an Atomicity Violation

thd->proc_info is being modified by
both threads

What happens if Thread 1 is

interrupted after the if condition
check?




Atomicity Violation Bugs

* “The desired serializability among multiple memory accesses is
violated”

* A critical section of code intended to be atomic does not have atomicity
enforced

* Caused by an “atomicity assumption”



How can we fix this?
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Thread 1::

if (thd->proc_info) {
fputs (thd->proc_info,

}

Thread 2::
thd->proc_info = NULL;
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thd->proc_info is being modified by
both threads

What happens if Thread 1 is

interrupted after the if condition
check?




Atomicity Violation Example Fix

* Locks around both the access and modification of thd->proc_info

pthread_mutex_t proc_info_lock = PTHREAD_MUTEX_ INITIALIZER;

Thread 1::
pthread_mutex_lock (&proc_info_lock);
if (thd->proc_info) {

fputs (thd->proc_info, ...);
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}

pthread_mutex_unlock (&proc_info_lock);
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10w Thread 2::

n pthread_mutex_lock (&proc_info_lock);

12 thd->proc_info = NULL;

13 pthread_mutex_unlock (&proc_info_lock);



Example

* What is wrong with this code?

Thread 1::
void init () {
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}

void mMain(...) {
mState = mThread->State;
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}

* This is an Order-Violation Bug

mThread = PR_CreateThread (mMain, ...);

Thread 2;:; ] What happens if Thread 2 runs

first?




Order-Violation Bugs

* “The desired order between two (groups of) memory accesses is
flipped (i.e., A should always be executed before B, but the order is
not enforced during execution)”

* We assume instructions will take place in a specific order without a
guarantee



How can we fix this?

* What is wrong with this code?

Thread 1::
void init () {
mThread = PR_CreateThread (mMain, ...);

— = ro —

}

Thread 2 ] What happens if Thread 2 runs
void mMain(...) { first?

mState = mThread->State;
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}



Order-Violation Example Fix

pthread_mutex_t mtLock = PTHREAD_MUTEX_ INITIALIZER;
pt hread_cond_t mtCond = PTHREAD_ _COND_INITIALIZER;
int mtInit = 0;

Thread 1::
void init () {

* We can fix this code by using a
condition variable to ensure the
proper ordering and avoid busy
waiting.

mThread = PR_CreateThread (mMain, ...);
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// signal that the thread has been created...
pthread_mutex_lock (&mtLock) ;

mtInit = 1;

pthread_cond_signal (&mtCond) ;
pthread_mutex_unlock (&mtLock) ;
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Thread 2::
void mMain(...) {
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// wait for the thread to be initialized...
pthread_mutex_lock (&mtLock) ;
while (mtInit == 0)

pthread_cond_wait (&mtCond, &mtLock);
pthread_mutex_unlock (&mtLock) ;
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mState = mThread->State;
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Non-Deadlock Bugs

e Atomicity and Order-Violation bugs are considered non-deadlock
bugs

* They don’t prevent the threads from executing code, but the way in
which they allow operations to occur can yield incorrect results or
crashing

* Roughly 97% of the non-deadlock bugs in the Lu et al. study were one
of these bugs



Example

* What is wrong with this code?

Thread 1:

pthread_mutex_lock (L1);
pthread_mutex_lock (L2);

Thread 2:

pthread_mutex_lock (L2);
pthread_mutex_lock (Ll);
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What happens if Thread 1 holds ———— |Lock L1
L1 and is interrupted by Thread 2

who manages to hold L27

Wanted by
—
—
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* This is a (simple) Deadlock

Lock L2 | st
Holds




Deadlocks

* While the previous example is obvious, these arise with complicated
interactions over large code bases

* Encapsulation can exacerbate this issue

* Hiding implementation behavior to make software easier to develop and
modular

* Some APIs have thread safe functions/objects, where the locking order and
handling are obscured or arbitrary



Conditions for a Deadlock

* Mutual Exclusion: threads get exclusive control of resources (grabs a
lock)

* Hold-and-wait: Threads hold onto resources allocated to them (locks
owned) and wait for additional resources (locks needed)

* No preemption: Resources cannot be forcibly removed from threads
holding them

e Circular wait: a circular chain of threads such that each thread holds
one or more resources (lock) that are needed by other threads in the
chain



Avoiding Circular Wait

* Ensure that locks in the system are acquired using a strict or partial
ordering

* If you have a small number of locks, acquire them in the same order
for each thread (strict ordering)

* If you have many locks, you can carefully create sub groups and
identify the orderings to avoid dead locks (partial ordering)

* Note that this is a conversion, and not enforced, so lapses in order
could create deadlock opportunities



Avoiding Hold-and-wait
 Limited options for this solution

* We can have a single lock used to protect the lock acquisition process

* This means collecting all the locks for protected resources becomes an atomic
operation

* Problem is this requires us to know all needed locks ahead of time

* It also limits the amount of concurrency as all threads will need to
wait for the single lock



Avoiding No Preemption

* While not forcibly removing the lock from a thread, we could maintain a
lock conditionally

* Using something like pthread mutex trylock() we couldattempt
to grab the resource (lock) we need, but if we can’t, then we let go of the
resources we currently hold

* This can work, but becomes increasingly complicated with the number of
“steps” in the synchronization process

* Needing to free acquired memory, other locks/resources, etc. to “undo” the process

* Could still cause livelock, where threads continuously acquire and release
the locks as the cannot gain access to both without interruption



Avoiding Mutual Exclusion

e Difficult to do especially with complex operations

* Lock-free/wait free approaches can leverage atomic operations
provided by instruction set and hardware to perform operations in a

thread safe way

1 int CompareAndSwap (int *address, int expected, int new) {
if (xaddress == expected) {

raddress = new;

return 1; // success
}

return 0; // failure

}
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1 void AtomicIncrement (int *value, int amount) {

do {
3 int old = *value;
4 } while (CompareAndSwap (value, old, old + amount) == 0);

5}

Still need to watch out for livelock!



Deadlock Avoidance via Scheduling

* What if instead of prevention, we simply tried to avoid deadlock by
detecting which locks are needed by the threads

* So instead of coding a solution, the OS and it’s mighty scheduler,
handles this for us
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Detect and Recover

* A scheduling approach requires very specific circumstances and full
knowledge of the thread tasks...we aren’t likely to have that most times

 What if instead we let deadlocks occur...

* |f we kept a graph in memory of the resources requested, we could check
the graph for cycles which would indicate a deadlock

* The system can then either attempt recovery automatically, with human
intervention, terminating threads holding important resources, restart the
system/service, etc.



So what do we do...

e Code and develop your applications carefully
 Establish a clear and well defined lock acquisition order (Linux)

* Follow documentation guidelines for thread safe objects/data
structures

* |If possible lock-free/wait-free solutions might be applicable



Next Time

* We switch gears to start talking about persistence and associated 1/0
devices



