Concurrency Bugs

Chapter 32

Previously in CS212...

* We've looked at locks, condition variables, and semaphores

* We know that using threads and introducing concurrency in our
applications can cause extra complications

* We discussed deadlocks where the threads all in a perpetual state of
waiting on each other for resources

* An example was the dining philosophers

* Here we take closer look at deadlock and non-deadlocking bugs

Example

* What is wrong with this code?

1 Thread 1::

> if (thd->proc_info) {

3 fputs (thd->proc_info, ...);
s}

5

¢ Thread 2::

thd->proc_info = NULL;

* This is an Atomicity Violation

thd->proc_info is being modified by
both threads

What happens if Thread 1 is

interrupted after the if condition
check?

Atomicity Violation Bugs

* “The desired serializability among multiple memory accesses is
violated”

* A critical section of code intended to be atomic does not have atomicity
enforced

* Caused by an “atomicity assumption”

How can we fix this?

~3 o wm we L) "o bt

Thread 1::

if (thd->proc_info) {
fputs (thd->proc_info,

}

Thread 2::
thd->proc_info = NULL;

e o)

thd->proc_info is being modified by
both threads

What happens if Thread 1 is

interrupted after the if condition
check?

Atomicity Violation Example Fix

* Locks around both the access and modification of thd->proc_info

pthread_mutex_t proc_info_lock = PTHREAD_MUTEX_ INITIALIZER;

Thread 1::
pthread_mutex_lock (&proc_info_lock);
if (thd->proc_info) {

fputs (thd->proc_info, ...);

= W N -

}

pthread_mutex_unlock (&proc_info_lock);

v e N Y

10w Thread 2::

n pthread_mutex_lock (&proc_info_lock);

12 thd->proc_info = NULL;

13 pthread_mutex_unlock (&proc_info_lock);

Example

* What is wrong with this code?

Thread 1::
void init () {

— = ro —

}

void mMain(...) {
mState = mThread->State;

SO o ~) (o 2} wm

}

* This is an Order-Violation Bug

mThread = PR_CreateThread (mMain, ...);

Thread 2;:;] What happens if Thread 2 runs

first?

Order-Violation Bugs

* “The desired order between two (groups of) memory accesses is
flipped (i.e., A should always be executed before B, but the order is
not enforced during execution)”

* We assume instructions will take place in a specific order without a
guarantee

How can we fix this?

* What is wrong with this code?

Thread 1::
void init () {
mThread = PR_CreateThread (mMain, ...);

— = ro —

}

Thread 2] What happens if Thread 2 runs
void mMain(...) { first?

mState = mThread->State;

<O o ~] (o2 wn

}

Order-Violation Example Fix

pthread_mutex_t mtLock = PTHREAD_MUTEX_ INITIALIZER;
pt hread_cond_t mtCond = PTHREAD_ _COND_INITIALIZER;
int mtInit = 0;

Thread 1::
void init () {

* We can fix this code by using a
condition variable to ensure the
proper ordering and avoid busy
waiting.

mThread = PR_CreateThread (mMain, ...);

= o ~3 o wm e W (%] -

v
(=

// signal that the thread has been created...
pthread_mutex_lock (&mtLock) ;

mtInit = 1;

pthread_cond_signal (&mtCond) ;
pthread_mutex_unlock (&mtLock) ;

o v v .
v w (8] -

-t
wm

}

-
N

Thread 2::
void mMain(...) {

e e
= e

[
=

// wait for the thread to be initialized...
pthread_mutex_lock (&mtLock) ;
while (mtInit == 0)

pthread_cond_wait (&mtCond, &mtLock);
pthread_mutex_unlock (&mtLock) ;

R B R R

~3

mState = mThread->State;

ro ro ro [ro [ro
o o

L=
L —

Non-Deadlock Bugs

e Atomicity and Order-Violation bugs are considered non-deadlock
bugs

* They don’t prevent the threads from executing code, but the way in
which they allow operations to occur can yield incorrect results or
crashing

* Roughly 97% of the non-deadlock bugs in the Lu et al. study were one
of these bugs

Example

* What is wrong with this code?

Thread 1:

pthread_mutex_lock (L1);
pthread_mutex_lock (L2);

Thread 2:

pthread_mutex_lock (L2);
pthread_mutex_lock (Ll);

= Holds
What happens if Thread 1 holds ———— |Lock L1
L1 and is interrupted by Thread 2

who manages to hold L27

Wanted by
—
—
Aq pajuepp

* This is a (simple) Deadlock

Lock L2 | st
Holds

Deadlocks

* While the previous example is obvious, these arise with complicated
interactions over large code bases

* Encapsulation can exacerbate this issue

* Hiding implementation behavior to make software easier to develop and
modular

* Some APIs have thread safe functions/objects, where the locking order and
handling are obscured or arbitrary

Conditions for a Deadlock

* Mutual Exclusion: threads get exclusive control of resources (grabs a
lock)

* Hold-and-wait: Threads hold onto resources allocated to them (locks
owned) and wait for additional resources (locks needed)

* No preemption: Resources cannot be forcibly removed from threads
holding them

e Circular wait: a circular chain of threads such that each thread holds
one or more resources (lock) that are needed by other threads in the
chain

Avoiding Circular Wait

* Ensure that locks in the system are acquired using a strict or partial
ordering

* If you have a small number of locks, acquire them in the same order
for each thread (strict ordering)

* If you have many locks, you can carefully create sub groups and
identify the orderings to avoid dead locks (partial ordering)

* Note that this is a conversion, and not enforced, so lapses in order
could create deadlock opportunities

Avoiding Hold-and-wait
 Limited options for this solution

* We can have a single lock used to protect the lock acquisition process

* This means collecting all the locks for protected resources becomes an atomic
operation

* Problem is this requires us to know all needed locks ahead of time

* It also limits the amount of concurrency as all threads will need to
wait for the single lock

Avoiding No Preemption

* While not forcibly removing the lock from a thread, we could maintain a
lock conditionally

* Using something like pthread mutex trylock() we couldattempt
to grab the resource (lock) we need, but if we can’t, then we let go of the
resources we currently hold

* This can work, but becomes increasingly complicated with the number of
“steps” in the synchronization process

* Needing to free acquired memory, other locks/resources, etc. to “undo” the process

* Could still cause livelock, where threads continuously acquire and release
the locks as the cannot gain access to both without interruption

Avoiding Mutual Exclusion

e Difficult to do especially with complex operations

* Lock-free/wait free approaches can leverage atomic operations
provided by instruction set and hardware to perform operations in a

thread safe way

1 int CompareAndSwap (int *address, int expected, int new) {
if (xaddress == expected) {

raddress = new;

return 1; // success
}

return 0; // failure

}

~3 o wm e I [

1 void AtomicIncrement (int *value, int amount) {

do {
3 int old = *value;
4 } while (CompareAndSwap (value, old, old + amount) == 0);

5}

Still need to watch out for livelock!

Deadlock Avoidance via Scheduling

* What if instead of prevention, we simply tried to avoid deadlock by
detecting which locks are needed by the threads

* So instead of coding a solution, the OS and it’s mighty scheduler,
handles this for us

L1
L2

L1
L2

T1
yes
yes

T1
yes
yes

T2
yes
yes

T2
yes
yes

T3
no
yes

T3
yes
yes

T4
no
no

T4
no
no

CPU 1
CPU2

CPU 1
CPU 2

T3

T4

=

Higher resource utilization
limits concurrency

Detect and Recover

* A scheduling approach requires very specific circumstances and full
knowledge of the thread tasks...we aren’t likely to have that most times

 What if instead we let deadlocks occur...

* |f we kept a graph in memory of the resources requested, we could check
the graph for cycles which would indicate a deadlock

* The system can then either attempt recovery automatically, with human
intervention, terminating threads holding important resources, restart the
system/service, etc.

So what do we do...

e Code and develop your applications carefully
 Establish a clear and well defined lock acquisition order (Linux)

* Follow documentation guidelines for thread safe objects/data
structures

* |If possible lock-free/wait-free solutions might be applicable

Next Time

* We switch gears to start talking about persistence and associated 1/0
devices

