
Concurrency Bugs
Chapter 32



Previously in CS212…
• We’ve looked at locks, condition variables, and semaphores

• We know that using threads and introducing concurrency in our 
applications can cause extra complications

• We discussed deadlocks where the threads all in a perpetual state of 
waiting on each other for resources
• An example was the dining philosophers

• Here we take closer look at deadlock and non-deadlocking bugs



Example

• What is wrong with this code?

• This is an Atomicity Violation

thd->proc_info is being modified by 
both threads

What happens if Thread 1 is 
interrupted after the if condition 
check?



Atomicity Violation Bugs

• “The desired serializability among multiple memory accesses is 
violated”
• A critical section of code intended to be atomic does not have atomicity 

enforced

• Caused by an “atomicity assumption”



How can we fix this?

thd->proc_info is being modified by 
both threads

What happens if Thread 1 is 
interrupted after the if condition 
check?



Atomicity Violation Example Fix

• Locks around both the access and modification of thd->proc_info



Example

• What is wrong with this code?

• This is an Order-Violation Bug

What happens if Thread 2 runs 
first?



Order-Violation Bugs

• “The desired order between two (groups of) memory accesses is 
flipped (i.e., A should always be executed before B, but the order is 
not enforced during execution)”

• We assume instructions will take place in a specific order without a 
guarantee 



How can we fix this?

• What is wrong with this code?

What happens if Thread 2 runs 
first?



Order-Violation Example Fix

• We can fix this code by using a 
condition variable to ensure the 
proper ordering and avoid busy 
waiting.



Non-Deadlock Bugs

• Atomicity and Order-Violation bugs are considered non-deadlock 
bugs

• They don’t prevent the threads from executing code, but the way in 
which they allow operations to occur can yield incorrect results or 
crashing

• Roughly 97% of the non-deadlock bugs in the Lu et al. study were one 
of these bugs



Example

• What is wrong with this code?

• This is a (simple) Deadlock

What happens if Thread 1 holds 
L1 and is interrupted by Thread 2 
who manages to hold L2?



Deadlocks

• While the previous example is obvious, these arise with complicated 
interactions over large code bases

• Encapsulation can exacerbate this issue
• Hiding implementation behavior to make software easier to develop and 

modular
• Some APIs have thread safe functions/objects, where the locking order and 

handling are obscured or arbitrary



Conditions for a Deadlock

• Mutual Exclusion: threads get exclusive control of resources (grabs a 
lock)
• Hold-and-wait: Threads hold onto resources allocated to them (locks 

owned) and wait for additional resources (locks needed)
• No preemption: Resources cannot be forcibly removed from threads 

holding them
• Circular wait: a circular chain of threads such that each thread holds 

one or more resources (lock) that are needed by other threads in the 
chain



Avoiding Circular Wait

• Ensure that locks in the system are acquired using a strict or partial
ordering
• If you have a small number of locks, acquire them in the same order 

for each thread (strict ordering)
• If you have many locks, you can carefully create sub groups and 

identify the orderings to avoid dead locks (partial ordering)
• Note that this is a conversion, and not enforced, so lapses in order 

could create deadlock opportunities



Avoiding Hold-and-wait

• Limited options for this solution

• We can have a single lock used to protect the lock acquisition process
• This means collecting all the locks for protected resources becomes an atomic 

operation

• Problem is this requires us to know all needed locks ahead of time

• It also limits the amount of concurrency as all threads will need to 
wait for the single lock



Avoiding No Preemption

• While not forcibly removing the lock from a thread, we could maintain a 
lock conditionally
• Using something like pthread_mutex_trylock() we could attempt 

to grab the resource (lock) we need, but if we can’t, then we let go of the 
resources we currently hold
• This can work, but becomes increasingly complicated with the number of 

”steps” in the synchronization process
• Needing to free acquired memory, other locks/resources, etc. to ”undo” the process

• Could still cause livelock, where threads continuously acquire and release 
the locks as the cannot gain access to both without interruption



Avoiding Mutual Exclusion

• Difficult to do especially with complex operations
• Lock-free/wait free approaches can leverage atomic operations 

provided by instruction set and hardware to perform operations in a 
thread safe way

Still need to watch out for livelock!



Deadlock Avoidance via Scheduling

• What if instead of prevention, we simply tried to avoid deadlock by 
detecting which locks are needed by the threads

• So instead of coding a solution, the OS and it’s mighty scheduler, 
handles this for us

Higher resource utilization 
limits concurrency



Detect and Recover

• A scheduling approach requires very specific circumstances and full 
knowledge of the thread tasks…we aren’t likely to have that most times

• What if instead we let deadlocks occur…

• If we kept a graph in memory of the resources requested, we could check 
the graph for cycles which would indicate a deadlock

• The system can then either attempt recovery automatically, with human 
intervention, terminating threads holding important resources, restart the 
system/service, etc.



So what do we do…

• Code and develop your applications carefully
• Establish a clear and well defined lock acquisition order (Linux)

• Follow documentation guidelines for thread safe objects/data 
structures

• If possible lock-free/wait-free solutions might be applicable



Next Time

• We switch gears to start talking about persistence and associated I/O 
devices


