
Semaphores
Chapter 31



Previously in CS212…
• We’ve looked at locks and condition variables

• We can combine these two concepts to create a new type of 
synchronization primitive



Semaphores

• Object with an integer value

• We can decrement the value of the integer by 1
• sem_wait() (POSIX semaphores)
• P() (Dijkstra - Dutch for “prolaag” or “try decrease”)

• We can increment the value of the integer by 1
• sem_post() (POSIX semaphores)
• V() (Dijkstra - Dutch for “verhoog” or “increase”)



Semaphore Usage

• We can initialize a semaphore’s starting integer value to anything we 
want

• As we make calls to sem_wait(), we decrease the value and then 
check if the integer value in negative
• If so, our thread waits until the value becomes non-negative

• When we make calls to sem_post(), sleeping threads from the 
sem_wait() operation using the semaphore can then wake up and try 
to complete their task



Semaphore 
Implementation



Semaphore Nuance

• Multiple threads can call sem_wait() causing the integer value and 
will queue to be woken up

• The sem_post() call does not wait for a condition; it just increments 
the integer value and wakes up a sleeping thread

• We can envision that our semaphore integer value can go negative if 
we have multiple calls to sem_wait(); how negative the value is, 
represents the number of threads waiting
• Note that this ”invariant” is not always used in implementation (Linux 

semaphores do not go negative).



Application – Binary Semaphores

• Like a lock

• Integer value represents 
a 1/0 value to ”lock and 
unlock” a critical section



Application - Ordering
• Like a condition variable

• If we choose the correct 
starting value, we can 
ensure some simple 
ordering scenarios

• X = ?



Application - Ordering



Application - Ordering



Application - Producer/Consumer

Check out the GitHub class repo for 
the code example

• As before with condition 
variables, we can create 
this pattern

• Note the need for locking 
around the critical 
section if the queue is > 1 
in size



Application - Reader-Writer Locks
• A unique pattern where we may have multiple threads interested in consuming 

some data

• If the threads aren’t making any changes, we can allow them to read the data

• However, if a thread wants to write to the data, we need to ensure:
• There are no readers actively using the data
• There are no other writers using the data

• Readers need to acquire a lock on the critical section (reader count update), 
and a lock on the writing capability (write lock)

• Writers must wait until they can acquire the write lock

Check out the GitHub class repo for the code example



Application – Thread Throttling

• Sometimes we may have more threads in use than other resources 
may be able to handle

• Imagine several hundred threads malloc-ing memory

• This burden on the system might be more than it can handle

• So instead, we can use our semaphore to limit the number of threads 
that may enter a section of code at once

Check out the GitHub class repo for the code example



Next Time

• We take a closer look at concurrency bugs.


