
Condition Variables
Chapter 30



Previously in CS212…
• We’ve talked using locks with certain data structures

• Problematically, when using locks, we were mostly spin/busy waiting

• This isn’t very efficient as it wastes valuable CPU time to maybe do no 
meaningful work

• Perhaps there might be a better way…



Condition Variables

• Allow a thread to wait until a condition is true

• This is an explicit queue where threads wait while the state of 
execution is not desirable (e.g. data is not ready to be read)

• Once the state changes, we can signal one or more of those threads 
to wake up and do work (e.g. data is available for processing)



Basic Ops

• Wait()
• Releases the lock AND puts the calling thread to sleep atomically
• When it returns, re-acquires the lock

• Signal()
• Wake up at least one thread waiting for a certain condition variable

• Broadcast()
• Wake up all threads waiting for a certain condition variable
• Useful, but can mask design flaws where signal is a better choice



Producer/Consumer Problem

• Also called the bounded-buffer problem

• Common use case when working with data and using threads

• Some threads need to process some data, while others are 
responsible for creating it

• Using a queue where the consumer enqueues jobs/data for 
processing and consumers dequeue data to perform operations



Gotchas

• Hold the lock when calling signal or wait to be safe!

• Don’t use one conditional variable for multiple purposes
• E.g. waking consumer and producers when you only want one or the other

• You need a lock AND a conditional variable

• When checking a state (e.g. done) use a while loop and not an if to 
prevent issues with spurious wakeup



Next Time

• We look at semaphores!


