Lock-based Concurrent Data
Structures

Chapter 29

Previously in CS212...

e We've talked about threads and how we can coordinate and control
concurrent thread execution with locks

* We discussed some of the metrics that are important to us regarding
locking solutions
* Mutual exclusion
* Fairness
* Performance

* Now we’ll look a bit at the interplay between locking and common
data structures

Controlled Chaos

* We know that we are mostly at the mercy of the scheduler when it
comes to what, when, and for how long a process or its threads may
run

* Integrating locks with data structures and operations, can help us
make them thread safe.

* Locks provide mutually exclusive access to code that should not be altered
concurrently

* What does it look like to make a concurrent data structure and what
must be considered?

Concurrent Counters | typedes struct _counter_t

int value;
3 pthread_mutex_t lock;
4 } counter_t;

* Might want to keep track of operation

counts, resource availability status, indices ¢ void *netleountertowe)
into other data structures, etc. while using + = Fehreadmutex_init (sem>lock, NULL);
threads 0
1 void increment (counter_t =*c) {
e Straight forward solution, lock the : Sthresdmutex_tock(fermlock) s
increment, decrement, and read ops ¢ Pthread mutex unlock (§c->lock);
* Note that the caller doesn’t have to Worry . .oig decrement (counter t vc) |
about the lock (similar concept to a . e tock germock)y
H 20 Pthread_mutex_unlock (&c->1lock);
Monitor) "
* Performance hit! » int get (counter_t xc) {
. 24 thread_mutex_lock ->lock);
* Single Thread: 0.03 seconds . ot e ook tReree)

26 Pthread_mutex_unlock (&c—->1lock);
return rc;

e Two Threads: 5 seconds

Figure 29.2: A Counter With Locks

Scaling Counting

e Simple solution won’t do
* One option is to approximate it

Example with 4 CPUs

* Each CPU gets a local counter Time | Li L. Ls Li |G

* No concurrency issue there 01 0 0 0 0 |0

1| 0 0 1 1 |0

* Add another counter that is shared globally 2| 1 0 2 1 |0

3| 2 0 3 1 |0

among all the CPUS i 3 o 3 2 lo

: 5| 4 1 3 3 |0
* At a given update value for the local 61550 1 3 4 |5(fromLy)
counters add that value to the global 71 0 2 4 5—0 | 10 (from L)

counter then set the value backto 0 Figure 29.3: Tracing the Approximate Counters

* Only need to lock global counter read/write
ops

Concurrent Linked Lists

e Similarly, to the counter we
could just focus on the functions
that change the linked list

* Lock at the top of the function,
and unlock before we leave

* What happens if the malloc
fails?
* If we forgot the lock, this would be
quite bad™

18
19
20
21
22
23
24
25
26
27
28
29
30
31

int List_Insert(list_t L, int key) {

pthread_mutex_lock (&L—->1lock);

node_t *new = malloc(sizeof (node_t));

if (new == NULL) {
perror ("malloc");
pthread_mutex_unlock (&L—->1lock);
return -1; // fail

}

new—>key = key;
new—>next = L->head;
L->head = new;

pthread_mutex_unlock (&L—>1lock) ;
return 0; // success

Concurrent Linked Lists - Fixed

volid List_Insert (list_t =L, int key) {
// synchronization not needed
node_t *new = malloc(sizeof (node_t));

e Similarly, to the counter we
could just focus on the functions

O 0 NN O

that change the linked list if (new == NULL) ({
] 10 perror ("malloc");

* Lock at the top of the function, return;

and unlock before we leave 12 }

] 13 new—>key = key;

* What happens if the malloc 14

fails? 15 // Jjust lock critical section

) 16 pthread_mutex_lock (&L—>1lock) ;
* If we forgot the lock, this would be _, new->next = L->head;

quite bad™ 18 L->head = new;
o LEt@YﬁXitu. 19 pthread_mutex_unlock (&L—->1lock);

Scaling Linked Lists

* Locking the whole list means that no other thread can do concurrent
operations (even if it just to read the list)

 We could have a lock for each node

* As we traverse the list, we acquire the next node’s lock and release
the previous one

* Hand-over-hand locking or lock coupling

* While concurrency goes up, the performance is (roughly) the same as
locking the entire list

Scaling Concurrent Queues

* Again, we could just use a big lock around the whole queue

* A better idea is to focus just on two nodes, the head and the tail of
the queue

* Head for dequeue operations
 Tail for enqueue operations

* We provide a fake starting node so that queue has one node
initialized for setting up the queue and the locking

Scaling Concurrent Hash Tables

 RECAP: Hash tables store data using a key that is run through a
function to locate the data in the structure

* The example simply uses integer keys and a mod function based on
the number of “buckets” to hold data to determine where the values
are

* Instead of locking the entire hash table, we can use the concurrent
linked list to hold each “bucket” of data when we have hash collisions

Gotchas

* Be careful of control structures and locks

* Conditional paths, early returns, exits, etc. can make for edge cases where
concurrency fails

* Avoid premature optimization
* Consider the case of the linked list

* We could implement the hand-over-hand approach which is more
complicated

 However, the performance gains are negligible

* Hold off until you see a need to improve performance before you try to solve
a problem you may not have

Next Time

 We look at condition variables

