
Lock-based Concurrent Data 
Structures

Chapter 29



Previously in CS212…
• We’ve talked about threads and how we can coordinate and control 

concurrent thread execution with locks

• We discussed some of the metrics that are important to us regarding 
locking solutions
• Mutual exclusion
• Fairness
• Performance

• Now we’ll look a bit at the interplay between locking and common 
data structures



Controlled Chaos

• We know that we are mostly at the mercy of the scheduler when it 
comes to what, when, and for how long a process or its threads may 
run

• Integrating locks with data structures and operations, can help us 
make them thread safe.
• Locks provide mutually exclusive access to code that should not be altered 

concurrently

• What does it look like to make a concurrent data structure and what 
must be considered?



Concurrent Counters
• Might want to keep track of operation 

counts, resource availability status, indices 
into other data structures, etc. while using 
threads
• Straight forward solution, lock the 

increment, decrement, and read ops
• Note that the caller doesn’t have to worry 

about the lock (similar concept to a 
Monitor)
• Performance hit!
• Single Thread: 0.03 seconds
• Two Threads: 5 seconds



Scaling Counting
• Simple solution won’t do
• One option is to approximate it

• Each CPU gets a local counter
• No concurrency issue there

• Add another counter that is shared globally 
among all the CPUS
• At a given update value for the local 

counters add that value to the global 
counter then set the value back to 0
• Only need to lock global counter read/write 

ops

Example with 4 CPUs



Concurrent Linked Lists

• Similarly, to the counter we 
could just focus on the functions 
that change the linked list
• Lock at the top of the function, 

and unlock before we leave
• What happens if the malloc 

fails?
• If we forgot the lock, this would be 

quite badTM



Concurrent Linked Lists - Fixed

• Similarly, to the counter we 
could just focus on the functions 
that change the linked list
• Lock at the top of the function, 

and unlock before we leave
• What happens if the malloc 

fails?
• If we forgot the lock, this would be 

quite badTM

• Let’s fix it…



Scaling Linked Lists

• Locking the whole list means that no other thread can do concurrent 
operations (even if it just to read the list)

• We could have a lock for each node

• As we traverse the list, we acquire the next node’s lock and release 
the previous one
• Hand-over-hand locking or lock coupling

• While concurrency goes up, the performance is (roughly) the same as 
locking the entire list



Scaling Concurrent Queues 

• Again, we could just use a big lock around the whole queue

• A better idea is to focus just on two nodes, the head and the tail of 
the queue
• Head for dequeue operations
• Tail for enqueue operations

• We provide a fake starting node so that queue has one node 
initialized for setting up the queue and the locking



Scaling Concurrent Hash Tables

• RECAP: Hash tables store data using a key that is run through a 
function to locate the data in the structure

• The example simply uses integer keys and a mod function based on 
the number of “buckets” to hold data to determine where the values 
are

• Instead of locking the entire hash table, we can use the concurrent 
linked list to hold each “bucket” of data when we have hash collisions



Gotchas

• Be careful of control structures and locks
• Conditional paths, early returns, exits, etc. can make for edge cases where 

concurrency fails

• Avoid premature optimization
• Consider the case of the linked list
• We could implement the hand-over-hand approach which is more 

complicated
• However, the performance gains are negligible
• Hold off until you see a need to improve performance before you try to solve 

a problem you may not have



Next Time

• We look at condition variables


