Locks

Chapter 28



Previously in CS212...

* We've talked about why we might want to use threads
* Concurrency
* Preventing the entirety of a process from being blocked
e Sharing data between concurrently running threads of execution

* We've talked about how we can do this on Unix systems in C
e pthreads
* locks (mutex)
e condition variables

e Tangent: | also tried (in vain) to remember name of the CAP Theorem when
discussing webservices

* Now we need to talk more about how the OS deals with these things,
starting with locks


https://en.wikipedia.org/wiki/CAP_theorem

Locks

* Essentially a variable that acts much like a lock on door
* The door gives access to the critical section of code
* Only one thread can enter at a time
* As the thread enters, it locks the door to keep other threads out
* When the thread is done, it unlocks the door for other threads to gain access

* We need to consider a few measures of how well a locking solution works:
* Mutual exclusion — does it ensure only one thread for access?
* Fairness — do all the threads get a fair chance at the lock (avoiding starvation)?
* Performance — what is the overhead needed for the locking mechanism?



Approaches — Controlling Interrupts

* The core need for locks is that the scheduler can interrupt a thread at
any time and thus stop them in the middle of important work potentially
putting the system in a non-deterministic state between one or more
threads

* What if we just disable interrupts when we lock and enable them when
we unlock?

* Malicious/greedy/buggy programs can dominate the system and lock out the OS
* Doesn’t work with multiprocessors as the threads might not be on the same CPU
» Without interrupts other events (like I/O) might be missed

* Does have limited application within the OS kernel, but not for general
purpose use



10
11
12
13
14
15
16

Approaches — Load and Store Flag

* We said previously that a lock is a variable, so why not just create a
variable in our code, and have one thread check for the right value,
and the other thread change it?

volid lock (lock t *mutex) {

while (mutex->flag == 1) // TEST the flag If we get interrupted

; // spin-wait (do nothing) just as we are about
mutex->flag = 1; // now SET it! to set the flag to 1,
} another process might
void unlock (lock_t xmutex) { be able to as welll
mutex->flag = 0;

}
Figure 28.1: First Attempt: A Simple Flag



WE NEED HARDWARE SUPPORT!

 Remember that the hardware supports a specific set of low-level
instructions (assembly)

* Most single lines of C code are multiple low-level instructions
* We can be interrupted in between any of those instructions

* We need low-level support for a mechanism that maps or lock to a
single uninterrupted instruction



Test-And-Set Operation

 Gets the current value of the lock and sets it to be the new value

* Behavior is like this C code (but runs as one instruction):

int TestAndSet (int xold_ptr, int new)
int old = xold_ptr; // fetch old value at old_ptr
xold_ptr = new; // store "new’ into old_ptr
return old; // return the old wvalue

Ul e W N -

}

* If the lock is O, TAS gives us 0, but sets the lock to 1 indicating we have
the lock

* If the lock is already 1, TAS gives us 1 and sets the lock to 1 meaning
the lock is in use



* Here we can see the functions for our lock

o e Ny U e W N =

L T = A )
Ny U e W N = O

typedef struct ___lock_t {
int: flag;
k -lock it:

vold anit{lock t +*lock) 1
// 0: lock is available, 1: lock is held
lock->flag = 0;

}

vold lock{lock t *lock) 1
while (TestAndSet (&lock->flag, 1) == 1)

Using a Spin Lock with Test-And-Set

— How do we feel about this?

; // spin-wait (do nothing) €
}

void unlock (lock_t =xlock) {
lock->flag = 0;

}
Figure 28.3: A Simple Spin Lock Using Test-and-set



Spin Lock Evaluation

 Correctness:

 Fairness:

* Performance:



Spin Lock Evaluation

* Correctness: Yes
* The single test-and-set will provide a proper mutual exclusion

 Fairness:

* Performance:



Spin Lock Evaluation

* Correctness: Yes
* The single test-and-set will provide a proper mutual exclusion

* Fairness: No
* No guarantee for fairness
* Possible to spin forever (starvation)

* Performance:



Spin Lock Evaluation

* Correctness: Yes
* The single test-and-set will provide a proper mutual exclusion

* Fairness: No
* No guarantee for fairness
* Possible to spin forever (starvation)

e Performance: ... (assuming a short critical section)
* Multiple CPUs where the number of threads roughly equals the number of CPUs —
Works Okay

* Single CPU - No



A More Robust Instruction

* We aren’t limited to just setting 1 or O, we can have an instruction that
provides more flexibility

* One implementation is Compare-and-swap

int CompareAndSwap (int *ptr, int expected, int new) {

int original = xptr;
if (original == expected)
*ptr = new;

return original;

e T o

}

e Can support the same behavior as test-and-set but allows for other defined
value comparisons



More Advanced Checking

* Load-Linked and Stored-Conditional is a different take

* Here we load a value from memory, but we save where the value
came from and its old value

* This means even if another thread stored the same value, or tries to
load the same data but from a different address, it will fail

int LoadLinked(int *ptr) {
2 return =ptr;
3 }

1

int StoreConditional (int #*ptr, int value) {
6 if (no update to *ptr since LoadLinked to this address) {
*ptr = value;
return 1; // success!
} else |
10 return 0; // failed to update

Figure 28.5: Load-linked And Store-conditional



A Chance for Fairness

* The Fetch-and-add locking primitive takes
an old value and increments it by one

* This can be used for locks where the lock
value doesn’t determine whether the lock
is active or not, but rather, which specific
thread will get access

* The ticket lock can help ensure that all
threads make process

10

11

R o =l - W

1 int FetchAndAdd (int =ptr)
int old = *ptr;
*ptr = old + 1;
return old;

typedef struct __ lock_t {
int ticket;
int turn;

} lock_t;

void lock_init (lock_t =lock) {
lock—->ticket 0;
lock—->turn 0;

i

}

void lock(lock_t =lock) {
int myturn = FetchAndAdd(&lock->ticket);
while (lock->turn != myturn)
; // spin

}

void unlock (lock_t =x=lock) {
lock—->turn = lock->turn + 1;
}
Figure 28.7: Ticket Locks



Spinning
* Spinning can also be though of as busy waiting

* Essentially, no work is being done, but the thread is still using CPU
time repeatedly checking if the lock is free

* Generally, we’d like to avoid this if we can
* The more threads we have, the more valuable CPU time is wasted

e What else can we do?



Alternatives to Spinning

* Yield
* When a thread can’t get the lock, give up CPU time voluntary
* Simple solution to de-schedule a thread back to ready state

 With a small number of threads, it works fine, but as the thread count
increases the scheduler may take longer to return to the thread that has the
lock

* Queues and Sleeping

* |f we can’t get the lock, we jump into a queue and wait to be given the lock by
the thread who had it last

* Need to make sure that we coordinate the park/sleep process



Linux Futex Lock

* A two-phase lock

* Tries to spin first (quickest way to grab
the lock)

* If that fails, it goes to sleep

* Integer lock value

* Used the high bit to indicate that the
lock is in use, and the rest to indicate
how many threads are waiting for the
lock

e Hybrid Solution

MO W & W R e

w

void mutex_lock (int smutex) {
int wv;
/* Bit 31 was clear,
if (atomic_bit_test_set
return;
atomic_increment
while (1) {
if (atomic_bit_test_set (mutex,
atomic_decrement (mutex);
return;

we got the mutex (the fastpath) «/
(mutex, 31) == 0)

(mutex) ;
31) == 0) |

}

/* We have to waitFirst make sure the futex value
we are monitoring is truly negative (locked). */

v = *mutex;
if (v >= 0)
continue;
futex_wait (mutex, v);
}
}
void mutex_unlock (int s*mutex) {

/* Adding 0x80000000
only if there are

if (atomic_add_zero (mutex,
return;

to counter results in 0 if and
not other interested threads */
0x80000000))

/* There are other threads waiting for this mutex,
wake one of them up. =/
futex_wake (mutex);

}
Figure 28.10: Linux-based Futex Locks



Next Time

* We look at locks with respect to certain common data structures.



