
Locks
Chapter 28



Previously in CS212…
• We’ve talked about why we might want to use threads

• Concurrency
• Preventing the entirety of a process from being blocked
• Sharing data between concurrently running threads of execution

• We’ve talked about how we can do this on Unix systems in C
• pthreads
• locks (mutex)
• condition variables 

• Tangent: I also tried (in vain) to remember name of the CAP Theorem when 
discussing webservices

• Now we need to talk more about how the OS deals with these things, 
starting with locks

https://en.wikipedia.org/wiki/CAP_theorem


Locks

• Essentially a variable that acts much like a lock on door
• The door gives access to the critical section of code
• Only one thread can enter at a time
• As the thread enters, it locks the door to keep other threads out
• When the thread is done, it unlocks the door for other threads to gain access

• We need to consider a few measures of how well a locking solution works:
• Mutual exclusion – does it ensure only one thread for access?
• Fairness – do all the threads get a fair chance at the lock (avoiding starvation)?
• Performance – what is the overhead needed for the locking mechanism? 



Approaches – Controlling Interrupts
• The core need for locks is that the scheduler can interrupt a thread at 

any time and thus stop them in the middle of important work potentially 
putting the system in a non-deterministic state between one or more 
threads

• What if we just disable interrupts when we lock and enable them when 
we unlock?
• Malicious/greedy/buggy programs can dominate the system and lock out the OS
• Doesn’t work with multiprocessors as the threads might not be on the same CPU
• Without interrupts other events (like I/O) might be missed

• Does have limited application within the OS kernel, but not for general 
purpose use



Approaches – Load and Store Flag

• We said previously that a lock is a variable, so why not just create a 
variable in our code, and have one thread check for the right value, 
and the other thread change it?

If we get interrupted
just as we are about
to set the flag to 1,
another process might
be able to as well!



WE NEED HARDWARE SUPPORT!

• Remember that the hardware supports a specific set of low-level 
instructions (assembly)

• Most single lines of C code are multiple low-level instructions
• We can be interrupted in between any of those instructions

• We need low-level support for a mechanism that maps or lock to a 
single uninterrupted instruction



Test-And-Set Operation

• Gets the current value of the lock and sets it to be the new value
• Behavior is like this C code (but runs as one instruction):

• If the lock is 0, TAS gives us 0, but sets the lock to 1 indicating we have 
the lock
• If the lock is already 1, TAS gives us 1 and sets the lock to 1 meaning 

the lock is in use



Using a Spin Lock with Test-And-Set
• Here we can see the functions for our lock

How do we feel about this?



Spin Lock Evaluation

• Correctness:

• Fairness:

• Performance:



Spin Lock Evaluation

• Correctness: Yes
• The single test-and-set will provide a proper mutual exclusion

• Fairness:

• Performance:



Spin Lock Evaluation

• Correctness: Yes
• The single test-and-set will provide a proper mutual exclusion

• Fairness: No
• No guarantee for fairness
• Possible to spin forever (starvation)

• Performance:



Spin Lock Evaluation

• Correctness: Yes
• The single test-and-set will provide a proper mutual exclusion

• Fairness: No
• No guarantee for fairness
• Possible to spin forever (starvation)

• Performance: It depends… (assuming a short critical section)
• Multiple CPUs where the number of threads roughly equals the number of CPUs –

Works Okay
• Single CPU - No



A More Robust Instruction

• We aren’t limited to just setting 1 or 0, we can have an instruction that 
provides more flexibility
• One implementation is Compare-and-swap

• Can support the same behavior as test-and-set but allows for other defined 
value comparisons



More Advanced Checking
• Load-Linked and Stored-Conditional is a different take
• Here we load a value from memory, but we save where the value 

came from and its old value
• This means even if another thread stored the same value, or tries to 

load the same data but from a different address, it will fail



A Chance for Fairness

• The Fetch-and-add locking primitive takes 
an old value and increments it by one

• This can be used for locks where the lock 
value doesn’t determine whether the lock 
is active or not, but rather, which specific 
thread will get access

• The ticket lock can help ensure that all 
threads make process



Spinning

• Spinning can also be though of as busy waiting

• Essentially, no work is being done, but the thread is still using CPU 
time repeatedly checking if the lock is free

• Generally, we’d like to avoid this if we can
• The more threads we have, the more valuable CPU time is wasted

• What else can we do?



Alternatives to Spinning

• Yield
• When a thread can’t get the lock, give up CPU time voluntary
• Simple solution to de-schedule a thread back to ready state
• With a small number of threads, it works fine, but as the thread count 

increases the scheduler may take longer to return to the thread that has the 
lock

• Queues and Sleeping
• If we can’t get the lock, we jump into a queue and wait to be given the lock by 

the thread who had it last
• Need to make sure that we coordinate the park/sleep process



Linux Futex Lock

• A two-phase lock
• Tries to spin first (quickest way to grab 

the lock)
• If that fails, it goes to sleep

• Integer lock value
• Used the high bit to indicate that the 

lock is in use, and the rest to indicate 
how many threads are waiting for the 
lock

• Hybrid Solution



Next Time

• We look at locks with respect to certain common data structures.


