
Linux VM System
Chapter 23

Previously in CS212…
• We’ve spent a bunch of time looking at all the different ways to

virtualize memory

• Now we look at one specific example of an implementation of virtual
memory in the Linux operating system.

Linux Address Virtual Space (32-bit)

• Page 0 is left Invalid for detecting null-pointer
accesses
• Two different types of kernel addresses
• Kernel logical – normal virtual address space that can

be allocated and holds data structures, pages tables,
per-process kernel stacks, etc.
• Maps directly to the first portion of physical addresses:

0xC0000000 => 0x00000000
• Useful for direct memory access (I/O to and from devices via

specific memory locations)
• Kernel virtual - virtually contiguous, but physically

non–contiguous. Easy to allocate, so used for large
buffers and lets the kernel access more than the 1 GB
of RAM reserved for kernel memory (useful in 32-bit).

Page Table Structure (64-bit)

• A 32-bit address space has become too limiting
• Ram >= 4GB cannot be addressed in a 32-bit system (some addresses are

used for hardware, so you never get the full 4GB)

• Why most operating systems are now 64-bit

• This is the Virtual Address format for 64-bit Linux:

16-bits of
”head room”

Dir 1 Dir 2 Dir 3 Page Table

Large Page Support

• Linux can support not just 4KB pages, but 2MB to even 1GB pages in hardware
• Why?
• Larger pages == less mappings in the page table
• ** Better TLB Performance **

• Remember that the TLB cached page table mappings, if you have larger pages,
you can reduce the number of page table entries and hold more data
• Less page table entries means a better chance of having TLB Hits for better performance

• Downsides:
• Internal fragmentation
• Swapping large pages can increase the amount of I/O needed

Page Cache

• Page cache entries come from:
• Memory-mapped files – mapping virtual memory directly to another part of

memory
• File data and metadata from devices (read() and write())
• Anonymous memory - process heap and stack pages

• Page cache hash table holds entries
• If entries are dirty, they are periodically written out to their source by

a background thread
• This takes place after a certain period or if too many pages are dirty

Cache Replacement

• Standard LRU can be subverted with access to a large file
• LRU kicks out other pages to make room for the large file’s pages
• Worse yet if those pages aren’t needed multiple time

• 2Q Replacement is used instead
• Has two queues: inactive and active

• When something is accessed for the first time it goes in the first inactive
queue (A1)
• If that content is needed again, it goes in the second active queue (Aq)
• Replacement candidates are taken from the inactive queue and

periodically, active queue pages are demoted to the inactive queue

Next Time

• Buckle up…it’s time for concurrency and threading

