Swapping Policies

Chapter 22

Previously in CS212...

* We looked at mechanisms to avoid having to physically hold all the
information from our processes in memory at once by swapping
content to and from the disk

* But how do we determine which pages are removed and added to
memory when it’s time to swap?

Cache Management

* Since main memory can only hold a subset of all the pages in the
system it is essentially a form of cache

* When selecting replacement pages, we want to avoid cache misses
(inversely, optimizing for cache hits)
* Miss — data needed is not in memory and needs to be fetched from disk
* Hit — data needed is in memory

* We can use these conditions to determine performance of the
replacement policy

Average Memory Access Time (AMAT)

* A metric to evaluate how effective a page replacement strategy is
based on:
* The cost of accessing memory (T,
* The cost of accessing disk (Tp)
* The probability of a cache miss (Py.)

* The formula is: AMAT =Ty, + (Pyiss * Tp)

* Note that we always incur the memory access, while the disk access is an
added penalty for a miss

Example

* Assume we have 8 pages
* The current state of physical memory is:
* [page O, page 2, page 3, FREE, FREE]
* The current state of swap space is:
* [page5, pagel, page 6, page 7, page 4]
* What happens when we access memory in the following order
*0,3,25,2,3,6,0
e Hit, Hit, Hit, Miss, Hit, Hit, Miss, Hit = P,;.. = 25% (2/8 = .25)
* If RAM access takes 100 ns and Disk takes 10 ms
 100ns + (.25 * 10ms) = 2.5001ms

Take Aways

e Disk access is EXPENSIVE

* |t dominates the AMAT even with a small miss rate

* Determining how to handle data in memory and swap space will be
critical to mitigating cache miss penalties

* This is where page replacement policies come in

Optimal Replacement Policy

* Memory requests are known in advance

e Based on this information, we replace pages that will requested again
the furthest in the future

* Results in the fewest possible cache misses

* Does this sound suspiciously like it requires clairvoyant superpowers?
* That’s because it kind of does, or at least very predictable behavior
* A poor fit for general purpose operating systems
* Lacks a practical implementation
* So why do we care about it at all?
* A good benchmark for comparing policies against the ideal

Optimal Replacement Policy Example

e Assume a cache that can hold

three pages

* Note the first few misses

* Since the cache will not be pre-
populated with pages, we
suffer from a cold-start or
compulsory misses the first
time we access a page

 When the cache is full and we
access 3, we suffer a capacity

miss

Access

Hit/Miss?

Evict

Resulting
Cache State

PN = WO WRRONRKERO

Hitrate=(6 /(5 + 6)) = 54.5%

Hit rate w/o compulsory misses=(6 /(5 + 6 —4)) = 85.7%

Miss
Miss
Miss
Hit
Hit
Miss
Hit
Hit
Hit
Miss
Hit

2

3

= e e e O
NNWWWWNDNDNEeO

~

COOoOOOooo

~ ~ ~ ~ ~ ~ ~ ~ ~

~

FIFO Replacement Policy

* Keep a queue of all pages accessed

* When we need to replace a page, remove the first page in the queue
(the “front” of the queue)

» Simple, but poor performance

FIFO Replacement Policy

: : Resulting

* The hit rate is (4 / (7 t 4)) =36.4% Access Hit/Miss? Evict Cache State
0 Miss First-in— 0
1 Miss First-in— 0,1
* Quite a bit worse than optimal 2 Miss Firstin— 0,12
54 5% 0 Hit First-in— 0,1,2
(: °) 1 Hit First-in— 0,1,2
3 Miss 0 First-in— 1,2,3
0 Miss 1 First-in— 2,3,0
* Doesn’t consider the importance 3 Hit First-in— 2,3,0
£th in th h 1 Miss 2 First-in— 3,0,1
of the pages in the cache 2 Miss 3 First-in— 0,1,2
1 Hit First-in— 0,1, 2

Figure 22.2: Tracing The FIFO Policy

~
~

Random Replacement Policy

* Pick a page in the cache at random and remove it
* Doesn’t require any overhead
* Simple to implement

e Effectiveness depends on “luck”

Historical Replacement Policies

* While FIFO and Random are simple they don’t take into consideration
how recently things have been accessed

* The principle of locality says we will most likely need to access certain
parts of code or data structures frequently

* What if we considered this information when evicting pages from
cache?
* Least Recently Used (LRU) — Replace the page that hasn’t been accessed
within a given period

 Least Frequently Used (LFU) — Replace the page that has been used the least
within a given period (keeps track of how many accesses)

LRU vs LFU Example

* Assume the following page accesses:
*1,2,3,14,1,1,1,1,1,1,1,1,1,1,2,3,4

LRU LFU

* 1(1)

* 1(1), 2(1)

1(1), 2(1), 3(1)

1(12), 2(1), 3(1) <--- repeats for each 1
1(12), 2(2), 3(2)

1(12), 2(2), 4(1) <--- evict 3

<--- repeats for each 1

<---evict 1

Takeaways

* If there is no locality to the pages reference, all the replacement
policies perform the same (except optimal)

 Random is generally better than FIFO, and can be effective for
“sequential looping” workloads (where it bests all but optimal)

* Assuming a more typical workload, LRU and LFU should be closer to
optimal
* Does that matter vs. FIFO or Random?
* The more costly the miss the more the difference matters for performance

Implementing Historical Replacement Policies

* "Perfect” implementation requires quite a bit of overhead

* Implementation options might require:
* Updating a data structure to ensure the optimal page is ready for eviction

* Updating a cache record with data to indicate access counts or time accessed
* Loop/check all cache records to find the best eviction choice

* Needs to be done for EVERY MEMORY ACCESS

* Could have serious performance impact

Approximating LRU

e With a little hardware, we keep a reference bit to indicate that a page in
cache has been used and set it to one

* The OS then used a pointer to a cache entry and check the reference bit.
* Ifit’s 1, reset it to 0 and check the next page (or a random page)
e Repeat until we find a 0 entry

* The clock algorithm approach

 Performance is close to a strict LRU

Additional Considerations

* Dirty/Modified Bit

* Adirty bit indicates that a cache entry has been changed from its original
state

* This means if we remove it from cache, we must write the updated
data back to disk

* Extra expensive operation

* We may opt to remove a cache entry that has not been used

recently/frequently that also doesn’t have its modified bit set to avoid
the extra operation

Other VM Policies

* Page Selection
 Demand paging — pull pages into memory as they are needed

* Prefetching — try to load pages into memory that will likely be needed in the
future
* Need to be confident in this decision

* Writing pages to disk
* Individually write pages individually as needed
* Group pages to be written to optimize disk access

You are overburdened...

* What happens if you have enough processes running to overtax your
memory resources?

* The OS may resort to swapping pages to and from disk repeatedly
* This is known as thrashing and causes excessive performance degradation

* Old OSes tried to avoid this by simply not running a subset of processes
until resource became available

 Admission control

* New OSes may simply terminate large processes

Next Time

* We wrap up the discussion of Virtual Memory

* Examine how the concepts we have covered relate to the Linux
Operating System

