
Swapping Policies
Chapter 22



Previously in CS212…
• We looked at mechanisms to avoid having to physically hold all the 

information from our processes in memory at once by swapping 
content to and from the disk

• But how do we determine which pages are removed and added to 
memory when it’s time to swap?



Cache Management

• Since main memory can only hold a subset of all the pages in the 
system it is essentially a form of cache

• When selecting replacement pages, we want to avoid cache misses 
(inversely, optimizing for cache hits)
• Miss – data needed is not in memory and needs to be fetched from disk
• Hit – data needed is in memory

• We can use these conditions to determine performance of the 
replacement policy



Average Memory Access Time (AMAT)

• A metric to evaluate how effective a page replacement strategy is 
based on:
• The cost of accessing memory (TM)
• The cost of accessing disk (TD)
• The probability of a cache miss (PMiss)

• The formula is: AMAT = TM + (PMiss * TD)
• Note that we always incur the memory access, while the disk access is an 

added penalty for a miss 



Example

• Assume we have 8 pages
• The current state of physical memory is:
• [page 0, page 2, page 3, FREE, FREE]

• The current state of swap space is:
• [page5, page1, page 6, page 7, page 4]

• What happens when we access memory in the following order
• 0, 3, 2, 5, 2, 3, 6, 0
• Hit, Hit, Hit, Miss, Hit, Hit, Miss, Hit = PMiss = 25% (2/8 = .25)

• If RAM access takes 100 ns and Disk takes 10 ms
• 100ns + (.25 * 10ms) = 2.5001ms



Take Aways

• Disk access is EXPENSIVE
• It dominates the AMAT even with a small miss rate

• Determining how to handle data in memory and swap space will be 
critical to mitigating cache miss penalties

• This is where page replacement policies come in



Optimal Replacement Policy

• Memory requests are known in advance
• Based on this information, we replace pages that will requested again 

the furthest in the future
• Results in the fewest possible cache misses

• Does this sound suspiciously like it requires clairvoyant superpowers?
• That’s because it kind of does, or at least very predictable behavior
• A poor fit for general purpose operating systems

• Lacks a practical implementation

• So why do we care about it at all?
• A good benchmark for comparing policies against the ideal



Optimal Replacement Policy Example

• Assume a cache that can hold 
three pages
• Note the first few misses
• Since the cache will not be pre-

populated with pages, we 
suffer from a cold-start or 
compulsory misses the first 
time we access a page
• When the cache is full and we 

access 3, we suffer a capacity 
miss

Hit rate = (6 / (5 + 6)) = 54.5%
Hit rate w/o compulsory misses = (6 / (5 + 6 – 4)) = 85.7%



FIFO Replacement Policy

• Keep a queue of all pages accessed

• When we need to replace a page, remove the first page in the queue 
(the “front” of the queue)

• Simple, but poor performance



FIFO Replacement Policy

• The hit rate is (4 / (7 + 4)) = 36.4%

• Quite a bit worse than optimal 
(54.5%)

• Doesn’t consider the importance 
of the pages in the cache



Random Replacement Policy

• Pick a page in the cache at random and remove it

• Doesn’t require any overhead

• Simple to implement

• Effectiveness depends on “luck”



Historical Replacement Policies

• While FIFO and Random are simple they don’t take into consideration 
how recently things have been accessed

• The principle of locality says we will most likely need to access certain 
parts of code or data structures frequently

• What if we considered this information when evicting pages from 
cache?
• Least Recently Used (LRU) – Replace the page that hasn’t been accessed 

within a given period
• Least Frequently Used (LFU) – Replace the page that has been used the least 

within a given period (keeps track of how many accesses)



LRU vs LFU Example

• Assume the following page accesses:
• 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4

LRU
• 1
• 1, 2
• 1, 2, 3
• 2, 3, 1 <--- repeats for each 1
• 3, 1, 2
• 1, 2, 3
• 2, 3, 4 <--- evict 1

LFU
• 1(1)
• 1(1), 2(1)
• 1(1), 2(1), 3(1)
• 1(12), 2(1), 3(1) <--- repeats for each 1
• 1(12), 2(2), 3(2)
• 1(12), 2(2), 4(1) <--- evict 3



Takeaways

• If there is no locality to the pages reference, all the replacement 
policies perform the same (except optimal)

• Random is generally better than FIFO, and can be effective for 
“sequential looping” workloads (where it bests all but optimal)

• Assuming a more typical workload, LRU and LFU should be closer to 
optimal
• Does that matter vs. FIFO or Random? 
• The more costly the miss the more the difference matters for performance



Implementing Historical Replacement Policies

• ”Perfect” implementation requires quite a bit of overhead

• Implementation options might require:
• Updating a data structure to ensure the optimal page is ready for eviction
• Updating a cache record with data to indicate access counts or time accessed

• Loop/check all cache records to find the best eviction choice

• Needs to be done for EVERY MEMORY ACCESS
• Could have serious performance impact



Approximating LRU

• With a little hardware, we keep a reference bit to indicate that a page in 
cache has been used and set it to one

• The OS then used a pointer to a cache entry and check the reference bit.
• If it’s 1, reset it to 0 and check the next page (or a random page)
• Repeat until we find a 0 entry

• The clock algorithm approach

• Performance is close to a strict LRU



Additional Considerations

• Dirty/Modified Bit
• A dirty bit indicates that a cache entry has been changed from its original 

state

• This means if we remove it from cache, we must write the updated 
data back to disk
• Extra expensive operation

• We may opt to remove a cache entry that has not been used 
recently/frequently that also doesn’t have its modified bit set to avoid 
the extra operation



Other VM Policies

• Page Selection
• Demand paging – pull pages into memory as they are needed
• Prefetching – try to load pages into memory that will likely be needed in the 

future
• Need to be confident in this decision

• Writing pages to disk
• Individually write pages individually as needed
• Group pages to be written to optimize disk access



You are overburdened…

• What happens if you have enough processes running to overtax your 
memory resources?

• The OS may resort to swapping pages to and from disk repeatedly
• This is known as thrashing and causes excessive performance degradation

• Old OSes tried to avoid this by simply not running a subset of processes 
until resource became available
• Admission control

• New OSes may simply terminate large processes



Next Time

• We wrap up the discussion of Virtual Memory

• Examine how the concepts we have covered relate to the Linux 
Operating System


