
Swap Space
Chapter 21



Previously in CS212…
• With multi-level page tables, we can drastically shrink the amount of 

memory required for a page table
• On a TLB hit, we essentially pay no penalty, on a miss, we must perform extra 

expensive memory lookup operations

• While we have saved space, there are lots of processes being run 
both by the OS and the user

• We have assumed so far that everything can fit into RAM
• What happens when we can’t fit everything?



Memory is not infinite

• We need a place to put pages that aren’t in high demand to free up 
space
• Needs to have a larger capacity than RAM (Primary Memory/Storage)
• This means it will be slower as well
• HDD/SDD (Secondary Memory/Storage)

• We also need to maintain the illusion of single large address space 
across primary and secondary storage locations



Swap Space

• A portion of reserved disk space where we can offload pages from and restore 
them to memory
• We ”Swap” them in and out

• OS writes and reads from swap space and will need to remember the disk address 
of the given page

• The size of the swap space ultimately determines the maximum number of 
memory pages the system can use at a given time

• Swap space is NOT the only on-disk location for swapping
• Program binaries are generally on disk can have their code loaded into memory
• We can reuse the data at this location and not swap space for this as the binaries are not 

likely to change



Example

If we only had enough space in physical memory for four pages, we could 
utilize swap space to off load the pages increasing the number of pages we 
can have “in memory”.

How do we know when 
data is in swap space 
and where it is located 
on disk?



Present Bit

• Remember that the page table entry stores some information about 
the data contained in the page

• When trying to access a page from the page table we can check the 
present bit to make sure that the page is physically present in RAM

• If the page is not present, then we have a page fault



Page Fault

• When a page fault occurs, we trap to the OS and run a page-fault 
handler
• Virtually all page faults are handled by software

• How does the OS know where to find the page?
• The disk address is placed in the PTE as the PFN

• While the OS works to retrieve the page from disk, the process is 
blocked
• This will take quite a bit of time, so it’s best to overlap this request with 

execution of another processes



Page Faults and the TLB

• If the TLB miss occurs, we have some additional checks to do now 
with swap space
• If the page is both present and valid, the TLB handler finds PFN from 

the PTE and retries the instruction
• If the page is valid, but not present, then the page fault handler (OS) 

needs to be run find a free page (swapping out others if necessary) 
and retrieve the needed page from swap space (disk)
• If the page is not valid, nothing else matters and we have an invalid 

access (process is likely terminated)



To swap or not to swap

• The OS generally does not wait until all of memory is full to start 
swapping pages
• We use high watermark (HW) and low watermark (LW) thresholds

• A page-replacement policy determines how pages are exchanged
• This is critical for high performance
• Bad replacement decisions could cause programs to run orders of magnitude 

slower

• Swapping pages is generally done in a group or cluster to optimize the 
process of reading/writing to disk
• Handled by the swap/page daemon



Next Time

• We looked at mechanisms to avoid having to physically hold all the 
information from our processes in memory at once by swapping 
content to and from the disk

• Next time, we discuss policies used to determine which pages are 
removed and added to memory when it’s time to swap


